Metabolite profiling of Cheonggukjang inoculated with different Bacillus strains including Bacillus amyloliqueciens CH86-1, Bacillus licheniformis 58, and Bacillus licheniformis 67 during fermentation, was performed using gas chromatography-time of flight-mass spectrometry after derivatization, combined with multivariate statistical analysis. A total of 20 amino acids, 10 sugars, five sugar alcohols, and seven organic acids were identified in three Cheonggukjang samples. With fermentation time, most of the amino acids showed increasing amounts. On the other hand, most of the sugars including sucrose, fructose, and glucose decreasing patterns, and the amounts of organic acids varied. In order to observe differences in metabolites with fermentation time and inoculated Bacillus strains, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were carried out, respectively. On PCA plots, some sugars and organic acids including sucrose, fructose, glucose, mannose, succinic acid, and malonic acid, as well as most of the amino acids, contributed mainly to differentiation of the Cheonggukjang samples fermentation time. On the other hand, on PLS-DA, mannose, xylose, glutamic acid, and proline were mainly responsible for differentiating the Cheonggukjang among into various inoculated strains.
In this study, we compared the absorption and excretion of DNJ in mulberry leaf extract against that of the purified compound (DNJ) using GC-TOF-MS, a newly developed analytical method, when administered orally to rats. Moreover, we also compared absorption levels in small intestinal cells using the Caco-2 cell line. In the cell study, DNJ absorption from the mulberry extract seemed to be inhibited when compared to that of the purified DNJ compound. The concentration of DNJ in rat plasma was also significantly (p < 0.05) lower when the mulberry extract was administered versus the purified DNJ compound. The metabolic pattern of DNJ from the mulberry leaf extract indicated that most was excreted in the feces, whereas a lower amount was detected in the urine, which was similar to the purified DNJ compound. These findings indicate that the bioavailability of DNJ in mulberry leaf extract might be lower than that of highly purified DNJ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.