Concurrent hearing and genetic screening of newborns is expected to play important roles not only in early detection and diagnosis of congenital deafness, which triggers intervention, but also in predicting late-onset and progressive hearing loss and identifying individuals who are at risk of drug-induced HL. Concurrent hearing and genetic screening in the whole newborn population in Beijing was launched in January 2012. This study included 180,469 infants born in Beijing between April 2013 and March 2014, with last followup on February 24, 2018. Hearing screening was performed using transiently evoked otoacoustic emission (TEOAE) and automated auditory brainstem response (AABR). For genetic testing, dried blood spots were collected and nine variants in four genes, GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3, were screened using a DNA microarray platform. Of the 180,469 infants, 1,915 (1.061%) were referred bilaterally or unilaterally for hearing screening; 8,136 (4.508%) were positive for genetic screening (heterozygote, homozygote, or compound heterozygote and mtDNA homoplasmy or heteroplasmy), among whom 7,896 (4.375%) passed hearing screening. Forty (0.022%) infants carried two variants in GJB2 or SLC26A4 (homozygote or compound heterozygote) and 10 of those infants passed newborn hearing screening. In total, 409 (0.227%) infants carried the mtDNA 12S rRNA variant (m.1555A>G or m.1494C>T), and 405 of them passed newborn hearing screening. In this cohort study, 25% of infants with pathogenic combinations of GJB2 or SLC26A4 variants and 99% of infants with an m.1555A>G or m.1494C>T variant passed routine newborn hearing screening, indicating that concurrent screening provides a more comprehensive approach for management of congenital deafness and prevention of ototoxicity.
Collagen cross-linking, as a form of collagen post-translational modification, plays a crucial role in maintaining bone mechanical properties as well as in regulating cell biological functions. Shifts in cross-links profile are found apparently correlated to kinds of skeletal pathology and diseases, whereas little is known about the relationship between collagen cross-links and osteogenesis. Here, we hypothesized that the inhibition of collagen cross-links could impair skeletal microstructure and inhibit osteogenesis. A mouse model of collagen cross-linking defects has been established using subcutaneous injection of 350 mg/kg β-aminopropionitrile (BAPN) daily for 4 weeks, and same dose of phosphate buffered saline (PBS) served as control group. The analysis of bone microstructural parameters revealed a significant decrease of bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), and increase of bone surface ratio (BS/BV), structure model index (SMI) as well as trabecular separation (Tb.Sp) in the experimental group (p < 0.05), whereas there was no difference observed in bone mineral density (BMD). Histological staining displayed that the BAPN treatment caused thinner trabeculae and decrease of collagen content in proximal tibiae. The analysis of osteogenesis PCR (Polymerase Chain Reaction) array reflected that BAPN remarkably influenced the expression of Alpl, Bglap, Bgn, Bmp5, Col10a1, Col1a1, Col1a2, Col5a1, Itga2b, and Serpinh1. The results of immunohistochemistry displayed a significant reduction in the mean optical densities of OCN and COL1 at the presence of BAPN. The overall results of this study suggested that BAPN alters bone microstructure and hinders the expression of osteogenic genes without affecting mineralization processes, indicating the influences of collagen cross-links on osteogenesis may be a potential pathological mechanism in skeletal diseases.
BackgroundNicotinamide adenine dinucleotide phosphate (NADPH) oxidase produces reactive oxygen species (ROS) involved in oxidative stress and signal transduction. Recent studies have suggested that NADPH oxidase is associated with the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). The aim of this study was to detect the expression of NADPH oxidase subunits and 4‐hydroxynonenal (4‐HNE) in nasal polyp tissue and normal nasal mucosa, in order to explore the possible role played by NADPH oxidase in the pathogenesis of CRSwNP.MethodsThirteen patients with CRSwNP and 9 normal control subjects were selected to participate in this study, in which we evaluated the expression of different NADPH oxidase subunits (gp91phox, p67phox, p47phox, and p22phox) in nasal polyp (NP) tissue and control mucosa by Western blotting and real‐time polymerase chain reaction (PCR). Immunohistochemistry and immunofluorescence staining were used to detect expression of the p67phox subunit and 4‐HNE in NP tissue and normal nasal mucosa.ResultsWestern blot and real‐time PCR results showed that p67phox expression was significantly increased in NP tissue when compared with its expression in control mucosa (p = 0.004). p67phox was expressed in the eosinophils and neutrophils found in NP tissue, but not in the macrophages. Additionally, the levels of 4‐HNE expression were also significantly increased in NP tissue when compared with control mucosa (p = 0.001).ConclusionThe levels of p67phox messenger RNA (mRNA) and protein as well as 4‐HNE were both upregulated in NP tissue, suggesting that p67phox and oxidative stress play roles in the pathogenesis of CRSwNP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.