Induction of myofibroblast differentiation by TGFbeta in cultured human keratocytes and hTERT corneal fibroblasts occurs through a similar signal transduction pathway to that previously identified in the rabbit, which involves an autocrine PDGF feedback loop.
3D bioprinting allows the fabrication of 3-dimensional (3D) structures containing living cells whose 3D shape and architecture are matched to a patient. The feature is desirable to achieve personalized treatment of trauma or diseases. However, realization of this promising technique in the clinic is greatly hindered by inferior mechanical properties of most biocompatible bioink materials. Here, we report a novel strategy to achieve printing large constructs with high printing quality and fidelity using an extrusion-based printer. We incorporate cationic 2 nanoparticles in an anionic polymer mixture, which significantly improves mechanical properties, printability and printing fidelity of the polymeric bioink due to electrostatic interactions between the nanoparticles and polymers. Addition of cationic-modified silica nanoparticles to an anionic polymer mixture composed of alginate and gellan gum results in significantly increased zero-shear viscosity (1062 %) as well as storage modulus (486 %). As a result, it is possible to print a large (centimeter-scale) porous structure with high printing quality, whereas the use of the polymeric ink without the nanoparticles leads to collapse of the printed structure during printing. We demonstrate such a mechanical enhancement is achieved by adding nanoparticles within a certain size range (<100 nm), and depends on concentration and surface chemistry of the nanoparticles as well as the length of polymers. Furthermore, shrinkage and swelling of the printed constructs during crosslinking are significantly suppressed by addition of nanoparticles compared to the ink without nanoparticles, which leads to high printing fidelity after crosslinking. The incorporated nanoparticles do not compromise biocompatibility of the polymeric ink, where high cell viability (> 90%) and extracellular matrix secretion are observed for cells printed with nanocomposite inks. The design principle demonstrated can be applied for various anionic polymer-based systems, which could lead to achievement of 3D bioprinting-based personalized treatment.
Real-time photoacoustic (PA) imaging involves beamforming methods using an assumed fixed sound speed, typically 1540 m/s in soft tissue. This leads to degradation of PA image quality because the true sound speed changes as PA signal propagates through different types of soft tissues: the range from 1450 m/s to 1600 m/s. This paper proposes a new method for estimating an optimal sound speed to enhance the cross-sectional PA image quality. The optimal sound speed is determined when coherent factor with the sound speed is maximized. The proposed method was validated through simulation and ex vivo experiments with microcalcification-contained breast cancer specimen. The experimental results demonstrated that the best lateral resolution of PA images of microcalcifications can be achieved when the optimal sound speed is utilized.
Hydroxyapatite (HAP, Ca10(PO4)6(OH)2) nanoparticles with controlled materials properties have been synthesized through a two-step hydrothermal aging method to investigate fibronectin (Fn) adsorption. Two distinct populations of HAP nanoparticles have been generated: HAP1 particles had smaller size, plate-like shape, lower crystallinity, and more negative ζ potential than HAP2 particles. We then developed two-dimensional platforms containing HAP and Fn and analyzed both the amount and the conformation of Fn via Förster resonance energy transfer (FRET) at various HAP concentrations. Our FRET analysis reveals that larger amounts of more compact Fn molecules were adsorbed onto HAP1 than onto HAP2 particles. Additionally, our data show that the amount of compact Fn adsorbed increased with increasing HAP concentration due to the formation of nanoparticle agglomerates. We propose that both the surface chemistry of single nanoparticles and the size and morphology of HAP agglomerates play significant roles in the interaction of Fn with HAP. Collectively, our findings suggest that the HAP-induced conformational changes of Fn, a critical mechanotransducer protein involved in the communication of cells with their environment, will ultimately affect downstream cellular behaviors. These results have important implications for our understanding of organic–inorganic interactions in physiological and pathological biomineralization processes such as HAP-related inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.