BackgroundPlant defense against herbivores begins with perception. The earlier plant detects the harm, the greater plant will benefit in its arm race with the herbivore. Before feeding, the larvae of the rice pest Cnaphalocrocis medinalis, initially spin silk and fold up a leaf. Rice can detect and protect itself against C. medinalis feeding. However, whether rice could perceive C. medinalis leaf rolling behavior is currently unknown. Here, we evaluated the role of leaf rolling by C. medinalis and artificial leaf rolling in rice plant defense and its indirect effect on two important C. medinalis parasitoids (Itoplectis naranyae and Apanteles sp.) through a combination of volatile profiling, gene-transcriptional and phytohormonal profiling.ResultsNatural leaf rolling by C. medinalis resulted in an increased attraction of I. naranyae when compared to the undamaged plant after 12 h. Volatile analysis revealed that six out of a total 22 components significantly increased in the headspace of C. medinalis rolled plant when compared to undamaged plant. Principal component analysis of these components revealed similarities in the headspace of undamaged plant and artificially rolled plant while the headspace volatiles of C. medinalis rolled plant deferred significantly. Leaf rolling and feeding by C. medinalis up-regulated the plant transcriptome and a series of jasmonic acid (JA) and salicylic acid (SA) related genes. While feeding significantly increased JA level after 12 to 36 h, rolling significantly increased SA level after 2 to 12 h. Compared to artificial rolling, natural rolling significantly increased JA level after 36 h and SA level after 2 and 12 h.ConclusionsOur findings suggest that natural leaf rolling by C. medinalis can be perceived by rice plant. The detection of this behavior may serve as an early warning signal in favor of the rice plant defenses against C. medinalis.
BACKGROUND: Brown rice planthopper (BPH) is a devastating rice pest in Asia. Bph14 is the first cloned BPH-resistance gene in rice, inducing callose deposition while impeding BPH feeding. Nitrogen application affects plant growth and resistance. However, there is little evidence on the influence of nitrogen on the callose content or regulation of rice BPH resistance. In this study, Luoyou9348 (containing Bph14 and highly resistant to BPH) and Yangliangyou6 (without Bph14 and susceptible to BPH) were planted under varying nitrogen regimes (0 , 90, 180 kg ha −1) to determine their effects on the resistance levels of rice to BPH feeding. The experiments involved BPH performance, plant volatile profiling and BPH preferences in laboratory and field experiments. RESULTS: We found that BPH egg hatching rate, total number of eggs laid and BPH preference increased with increasing nitrogen application in both rice varieties. However, the expression of Bph14, callose content and BPH feeding significantly declined with an increase in nitrogen fertilization in Luoyou9348, compared with Yangliangyou6. Also, the emission of volatile terpene compounds increased with increasing nitrogen application, which resulted in an increase in BPH numbers on both varieties. Two-way analysis of variance indicated a significant interaction between rice variety and nitrogen in BPH feeding behavior. CONCLUSION: Our findings provide an insight for addressing problems involved in the incorporation of insecticidal genes into crop plants. The effects of nitrogen on insecticidal gene expression in rice plant defense are discussed.
Odorant-binding proteins (OBPs) typically act as transporters of odor molecules and play an important role in insect host location. Here, we identified an OBP in brown planthopper (BPH) Nilaparvata lugens salivary glands via transcriptome sequencing. Real-time quantitative PCR and Western blotting analysis results showed that NlugOBP11 was highly expressed in salivary glands and secreted into rice plant during feeding, suggesting that it assists in BPH feeding on rice. Functional analysis in N. lugens saliva revealed that silencing this gene by RNA interference decreased the BPH stylet performance in the phloem of rice plants, reduced sap sucking, and ultimately led to insect death. Moreover, overexpression of NlugOBP11 in rice protoplasts or Nicotiana benthamiana leaves inhibited the production of defense-related signaling molecule salicylic acid in rice plant. The results demonstrate that NlugOBP11 is not only essential for BPH feeding, but also acts as an effector that inhibits plant defense.
BACKGROUND Plant pathogens and pests often occur together, causing damage while interfering with plant growth. The effects of phytopathogenic infections on plant–herbivore–natural enemy tri‐trophic interactions (TTIs) have been extensively investigated, but little is known about how the interval of infection influences such relationships. Here, the effect of rice plants infected by the phytopathogen Rhizoctonia solani on the herbivorous rice brown planthopper (BPH) and associated egg parasitoid Anagrus nilaparvatae over a temporal scale was examined. RESULTS Our results showed that rice plants infected by R. solani showed increased volatile profiles and significantly attracted BPH and A. nilaparvatae at 5–15 days post infection (DPI) and 5–10 DPI, respectively, when compared with healthy plants. Jasmonic acid and salicylic acid content decreased significantly in BPH‐damaged plants after 15 DPI, whereas oxalic acid accumulated soon after 5 DPI when compared with healthy plants. To adapt to adverse environment, BPH laid more eggs and developed into macropterous adults. Under field conditions, R. solani infection had no substantial effect on the arthropod community when compared with healthy plants. CONCLUSION Taken together, R. solani infection altered rice–pest–parasitoid TTIs over a temporal scale. This result will shed more light on our understanding of plant pathogen–insect cross‐talk essential for developing novel pest management strategies. © 2021 Society of Chemical Industry.
Epicuticular wax plays an important part in protecting plant aerial organs from biotic and abiotic stresses. Nitrogen is the key limiting nutrient for crops and influences metabolite synthesis. However, how nitrogen influences wax composition on rice leaf and sheath at different growth stages has not been systematically examined. In this study, a total of 19 wax compounds in rice leaf and sheath were detected by using gas chromatography−mass spectrometry. Permutational multivariate analysis of variance (PermANOVA) indicated a significant influence of both nitrogen and growth stage on rice leaf and sheath wax composition. Nitrogen influenced wax composition on leaf and sheath mainly at 70 and 110 d, while the growth stage significantly influenced wax composition under all nitrogen levels. Our study provides the first report that rice wax composition changes with nitrogen and growth stage. This may support exploring nitrogen application and the associated ecological effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.