Chromosomal regions associated with marker segregation distortion in rice were compared based on six molecular linkage maps. Mapping populations were derived from one interspecific backcross and five inter-subspecific (indica/japonica) crosses, including two F2 populations, two doubled haploid (DH) populations, and one recombinant inbred (RI) population. Mapping data for each population consisted of 129-629 markers. Segregation distortion was determined based on chi-square analysis (P < 0.01) and was observed at 6.8-31.8%, of the mapped marker loci. Marker loci associated with skewed allele frequencies were distributed on all 12 chromosomes. Distortion in eight chromosomal regions bracketed previously identified gametophyte (ga) or sterility genes (S). Distortion in three other chromosomal regions was found only in DH populations, where japonica alleles were over-represented, suggesting that loci in these regions may be associated with preferential regeneration of japonica genotypes during anther culture. Three additional clusters of skewed markers were observed in more than one population in regions where no gametophytic or sterility loci have previously been reported. A total of 17 segregation distortion loci may be postulated based on this study and their locations in the rice genome were estimated.
An interspecific advanced backcross population derived from a cross between Oryza sativa "V20A" (a popular male-sterile line used in Chinese rice hybrids) and Oryza glaberrima (accession IRGC No. 103544 from Mali) was used to identify quantitative trait loci (QTL) associated with grain quality and grain morphology. A total of 308 BC3F1 hybrid families were evaluated for 16 grain-related traits under field conditions in Changsha, China, and the same families were evaluated for RFLP and SSR marker segregation at Cornell University (Ithaca, N.Y.). Eleven QTL associated with seven traits were detected in six chromosomal regions, with the favorable allele coming from O. glaberrima at eight loci. Favorable O. glaberrima alleles were associated with improvements in grain shape and appearance, resulting in an increase in kernel length, transgressive variation for thinner grains, and increased length to width ratio. Oryza glaberrima alleles at other loci were associated with potential improvements in crude protein content and brown rice yield. These results suggested that genes from O. glaberrima may be useful in improving specific grain quality characteristics in high-yielding O. sativa hybrid cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.