In this Letter, the robust ferroelectric properties of low-temperature (350 °C) Hf0.5Zr0.5O2 (HZO) films are investigated. We demonstrate that the lower crystallization temperature of HZO films originates from a densified film deposition with an anhydrous H2O2 oxidant in the atomic layer deposition process. As a consequence of this densification, H2O2-based HZO films showed completely crystallinity with fewer defects at a lower annealing temperature of 350 °C. This reduction in the crystallization temperature additionally suppresses the oxidation of TiN electrodes, thereby improving device reliability. The low-temperature crystallization process produces an H2O2-based HZO capacitor with a high remanent polarization ( Pr), reduced leakage current, high breakdown voltage, and better endurance. Furthermore, while an O3-based HZO capacitor requires wake-up cycling to achieve stable Pr, the H2O2-based HZO capacitor demonstrates a significantly reduced wake-up nature. Anhydrous H2O2 oxidant enables the fabrication of a more reliable ferroelectric HZO device using a low process thermal budget (350 °C).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.