General aesthetics is the science of the aesthetic in general, and its domain comprises aesthetic phenomena both in art and nature according to the monistic principle. However, from the viewpoint of its history, aesthetics has not always been defined as the science of only beauty. In the latter half of the nineteenth century, following the intellectual trends amid the rapid progress of the natural sciences, the need to treat art as an general science was advocated on the grounds that art could be clearly understood as consisting of concrete and empirical facts rather than as an abstract and ambiguous concept of beauty. The controversy continues to this day. Therefore, this article compares the classic definitions of beauty and art in the Orient and the West and examines the aesthetic meanings of beauty and art. And point out that art is also a medium for communicating aesthetic value, which has a social function. And during the phase of its enjoyment, art is an activity involving the contemplator's inner re-creation that allows for social participation through the subjective emotional self-expression of its aesthetic value.
The era of smart tourism has arrived. In the context of big data information, based on the thinking of the entire tourism activity, it is worth thinking about the role of tourism information in tourism activities. This paper proposes a method for evaluating the psychological expectations of tourist destinations by applying the quality function configuration. According to the needs of tourists, the relevant product characteristics of the tourist destination are selected, an evaluation quality house is established, and various relationships within the quality house are weighed, and established a mathematical model for the evaluation of tourists’ psychological expectations in tourist destinations. Bringing the methods of machine learning (ML) and data mining (DM) into the research of tourists’ psychological expectation value evaluation, ML is one of the main methods to solve the problem of DM. ML is the process of using the system itself to improve itself, therefore, ML is widely used in data mining. The research combines psychology and tourism research, through empirical research, to establish a structural equation model. It analyzes the influence of tourism information on tourists’ behavioral decisions, increases the media’s variable expectations of tourism, and uses tourist satisfaction and behavior as dependent variables. The results showed that the effect of tourism information on tourists is significantly greater than the expected effect (p = 0.510, P is significant at 0.001 level) than the effect of tourist satisfaction (p = 0.290, P is significant at 0.05 level). Therefore, in order to create good expectations for tourists, the general image of a tourist destination must match the actual local conditions. Using the support vector machine algorithm with the introduction of optimization mechanism to train the feature set of the user data, and then predict the links in Sina Weibo, and obtain higher prediction accuracy and prediction speed. The psychological expectation evaluation model of tourists in tourist destinations can effectively calculate the perceived value of psychological expectation evaluation of tourists in tourist destinations, and help tourists choose reasonable and satisfactory travel plans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.