In this study, the resistance to pitting corrosion of Fe-18Cr-9Mn-5.5Ni-0.3(C + N) austenitic stainless steel γ-SSs (in wt%) with different C/(C + N) ratios (0.02, 0.29, and 0.60) was evaluated. It was found to be difficult to form a γ-matrix without precipitation, because the Cr23C6 precipitation rate in the γ-SSs with the C/(C + N) value of 0.60 was too fast. Thus, it was recommended to maintain the C/(C + N) ratio below 0.6 in Fe-18Cr-9Mn-5.5Ni-0.3(C + N) γ-SSs. As a result of the potentiodynamic polarization tests, the γ-SS with a C/(C + N) ratio of 0.29 showed the highest resistance to pitting corrosion, and the resistance level of this alloy was superior to that of the AISI 304 γ-SS. Analysis of the passive film and matrix dissolution rates revealed that a higher C/(C + N) ratio of γ-SS increased the protective ability of the passive film and decreased the growth rate of the pits. Therefore, it could be concluded that partial substitution of C for N was advantageous for improving the pitting corrosion resistance of Fe-18Cr-9Mn-5.5Ni-0.3(C + N) γ-SSs, as long as C and N existed in a solid solution state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.