Quantum gravity effects on spectroscopy for the charged rotating gravity’s rainbow are investigated. By utilizing an action invariant obtained from particles tunneling through the event horizon, the entropy and area spectrum for the modified Kerr-Newman black hole are derived. The equally spaced entropy spectrum characteristic of Bekenstein’s original derivation is recovered. And, the entropy spectrum is independent of the energy of the test particles, although the gravity’s rainbow itself is the energy dependent. Such, the quantum gravity effects of gravity’s rainbow has no influence on the entropy spectrum. On the other hand, due to the spacetime quantum effects, the obtained area spectrum is different from the original Bekenstein spectrum. It is not equidistant and has the dependence on the horizon area. And that, by analyzing the area spectrum from a specific rainbow functions, a minimum area with Planck scale is derived for the event horizon. At this, the area quantum is zero and the black hole radiation stops. Thus, the black hole remnant for the gravity’s rainbow is obtained from the area quantization. In addition, the entropy for the modified Kerr-Newman black hole is calculated and the quantum correction to the area law is obtained and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.