We report the experimental demonstration of an electrically driven, single-mode, low threshold current (approximately 260 microA) photonic band gap laser operating at room temperature. The electrical current pulse is injected through a sub-micrometer-sized semiconductor wire at the center of the mode with minimal degradation of the quality factor. The actual mode of interest operates in a nondegenerate monopole mode, as evidenced through the comparison of the measurement with the computation based on the actual fabricated structural parameters. As a small step toward a thresholdless laser or a single photon source, this wavelength-size photonic crystal laser may be of interest to photonic crystals, cavity quantum electrodynamics, and quantum information communities.
Localized surface plasmon (LSP) effects due to Ag and Ag/SiO2 nanoparticles (NPs) deposited on GaN/InGaN multiquantum well (MQW) light‐emitting diode (LED) structures are studied. The colloidal NPs are synthesized by a sol‐gel method and drop‐cased on the LED structures. The surface density of NPs its controlled by the concentration of the NP solution. Theoretical modeling is performed for the emission spectrum and the electric field distribution of LSP resonance for Ag/SiO2 NPs. Enhanced photoluminescence (PL) efficiency is observed in the LED structures and the amount of PL enhancement increases with increasing the surface density of Ag and Ag/SiO2 NPs. These effects are attributed to resonance coupling between the MQW and LSP in the NPs. It is also shown that the PL enhancement attainable with Ag NPs and Ag/SiO2 NPs is comparable, but the latter displays a much higher stability with respect to long‐term storage and annealing due to a barrier for NP agglomeration, Ag oxidation, and impurity diffusion provided by the SiO2 shell.
The authors report an electrically driven, hexapole mode, single-cell photonic crystal laser operating at 1537.8 nm. Electrical current is supplied through a submicrometer-sized current post beneath the cavity center. This wavelength-scale single-cell photonic crystal laser operates in a single mode with threshold current of ϳ100 A at room temperature. Operation in the hexapole mode is confirmed by the near-field profile, far-field polarization, and the finite-difference time-domain computation based on the fabricated cavity structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.