Primordial germ cells (PGCs) are undifferentiated gametes with heterogeneity, an evolutionarily conserved characteristic across various organisms. Although dynamic selection at the level of early germ cell populations is an important biological feature linked to fertility, the heterogeneity of PGCs in avian species has not been characterized. In this study, we sought to evaluate PGC heterogeneity in zebra finch using a single-cell RNA sequencing (scRNA-seq) approach. Using scRNA-seq of embryonic gonadal cells from male and female zebra finches at Hamburger and Hamilton (HH) stage 28, we annotated nine cell types from 20 cell clusters. We found that PGCs previously considered a single population can be separated into three subtypes showing differences in apoptosis, proliferation, and other biological processes. The three PGC subtypes were specifically enriched for genes showing expression patterns related to germness or pluripotency, suggesting functional differences in PGCs according to the three subtypes. Additionally, we discovered a novel biomarker, SMC1B, for gonadal PGCs in zebra finch. The results provide the first evidence of substantial heterogeneity in PGCs previously considered a single population in birds. This discovery expands our understanding of PGCs to avian species, and provides a basis for further research.
Zebra finch is a representative animal model for studying the molecular basis of human disorders of vocal development and communication. Accordingly, various functional studies of zebra finch have knocked down or introduced foreign genes in vivo; however, their germline transmission efficiency is remarkably low. The primordial germ cell (PGC)-mediated method is preferred for avian transgenic studies; however, use of this method is restricted in zebra finch due to the lack of an efficient gene transfer method for the germline. To target primary germ cells that are difficult to transfect and manipulate, an adenovirus-mediated gene transfer system with high efficiency in a wide range of cell types may be useful. Here, we isolated and characterized two types of primary germline-competent stem cells, PGCs and spermatogonial stem cells (SSCs), from embryonic and adult reproductive tissues of zebra finch and demonstrated that genes were most efficiently transferred into these cells using an adenovirus-mediated system. This system was successfully used to generate gene-edited PGCs in vitro. These results are expected to improve transgenic zebra finch production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.