Piriformospora indica is a discovered endophytic fungus colonizing in roots of plants in 1998. The fungus can form the mycelium, mycelial roll, and pear-shaped spores in intercellular and intracellular regions of roots. The fungus colonizes various host plants and also realizes the pure culture in vitro without roots of host plants. P. indica shows many positive effects on host plants, including the promotion of plant growth, the enhancement of nutrient acquisition and stress tolerance, the improvement of disease resistance, and the promoted accumulation of bioactive substances. The commercial production of the fungal spores is established in bioreactor with nanostructured materials “zinc oxide” as nano embedded fungus, which provides provides changes into confers. The review simply summarized the biological characteristics of P. indica, physiological roles in plants, and potential utilization as a biofertilizer.
The present study aimed to evaluate the effect of an arbuscular mycorrhizal fungus (AMF), Clariodeoglomus etunicatum, on leaf food quality and relevant gene expression levels of tea (Camellia sinensis cv. ‘Fuding Dabaicha’) seedlings exposed to 0.5 μM P (P0.5) and 50 μM P (P50) levels. Twenty-four weeks later, the seedlings recorded higher root mycorrhizal fungal colonization in P50 than in P0.5. AMF-inoculated tea plants represented significantly higher leaf fructose and glucose contents and lower sucrose content than non-inoculated plants, irrespective of substate P levels. AMF treatment also increased total amino acids content in P0.5 and P50, accompanied with higher expression of glutamate dehydrogenase (CsGDH) and lower expression of glutamine synthetase (CsGS) and glutamine oxoglutarate aminotransferase (CsGOGAT). The total flavonoid content was higher in mycorrhizal versus non-mycorrhizal plants under P0.5 and P50, together with induced expression of phenylalanine ammonia-lyase (CsPAL) and cinnamic acid 4-hydroxylase (CsC4H). Mycorrhizal fungal inoculation improved catechins content, which is due to the up-regulated expression of flavanone 3-hydroxylase (CsF3H), flavonoid 3'-hydroxylase (CsF3'H), dihydroflavonol 4-reductase (CsDFR), leucoanthocyanidin reductase (CsLAR), anthocyanidin reductase (CsANR), and chalcone isomerase (CsCHI) under P0.5. However, under P50, the gene involved in catechins synthesis was not affected or down-regulated by mycorrhization, implying a complex mechanism (e.g. nutrient improvement). AMF also inhibited the tea caffeine synthase 1 (CsTCS1) expression regardless of P levels. Therefore, the results of this study concluded that inoculation with C. etunicatum improves leaf food quality of tea exposed to P stress, but the improved mechanisms were different between P0.5 and P50.
Ascorbate-glutathione cycle is an important pathway for plants to scavenge reactive oxygen species (ROS) under environmental stress conditions. The objective of this study was to investigate the effects of the endophytic fungus Serendipita indica on biomass, chlorophyll concent, ROS levels, antioxidant enzyme activities, and ascorbate-glutathione cycle in white clover under ample water and water stress conditions. The results showed that 46 days of soil water stress distinctly promoted root colonization by S. indica. Under water stress, S. indica inoculation significantly promoted shoot and root biomass, total chlorophyll content, and activities of superoxide dismutases (SOD; e.g., Fe-SOD and Cu/Zn-SOD) and peroxidase in roots, coupled with a decrease in malondialdehyde content in roots. In the ascorbate-glutathione cycle of roots, S. indica also significantly increased the activity of ascorbate peroxidase and glutathione reductase activities in water-stressed white clover, along with the increase in reduced ascorbic acid and reduced/oxidized glutathione contents, thus accelerating the ascorbate-glutathione cycle in inoculated plants to scavenge more ROS (e.g., hydrogen peroxide). As a result, S. indica enhanced the tolerance of white clover in response to water stress by enhancing antioxidant enzyme activities and accelerating the ascorbate-glutathione cycle.
A cultivable endophytic fungus, Piriformospora indica, improves growth and enhances stress tolerance of host plants, but the underlying mechanisms remain unknown. We hypothesized that P. indica enhanced the drought tolerance of the host by regulating the antioxidant defense system and composition of fatty acids. Trifolaite orange (Poncirus trifoliata) seedlings were inoculated with P. indica under ample water and drought stress to analyze the change in plant growth, reactive oxygen species (ROS) levels, antioxidant enzyme activities, non-enzymatic antioxidant concentrations, fatty acid compositions, and expressions of antioxidant enzyme genes and fatty acid desaturase (FAD) genes. Although the 9-week soil water deficit significantly increased the colonization of P. indica to roots, P. indica still promoted the increase of shoot biomass under drought. Soil drought triggered an elevation of hydrogen peroxide in roots, while the inoculated plants had lower levels of ROS (hydrogen peroxide and superoxide anion radicals) and lower degree of membrane lipid peroxidation (based on malondialdehyde levels) under drought. Drought treatment also elevated ascorbic acid and glutathione concentrations, and the elevation was further amplified after P. indica inoculation. Inoculated plants under drought also recorded significantly higher iron-superoxide dismutase (Fe-SOD), manganese-superoxide dismutase (Mn-SOD), peroxidases, catalase, glutathione reductase, and ascorbate peroxidase activities, accompanied by up-regulation of PtFe-SOD and PtCu/Zn-SOD expressions. Inoculation with P. indica significantly increased total saturated fatty acids (e.g., C6:0, C15:0, C16:0, C23:0, and C24:0) concentration and reduced total unsaturated fatty acids (e.g., C18:1N9C, C18:2 N6, C18:3 N3, C18:1 N12, and C19:1N9T) concentration, leading to a decrease in the unsaturation index of fatty acids, which may be associated with the up-regulation of PtFAD2 and PtFAD6 and down-regulation of PtΔ9. It was concluded that the colonization of P. indica can activate enzyme and non-enzyme defense systems and regulate the composition of fatty acids under drought, thus alleviating the oxidative damage to the host caused by drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.