Camellia oleifera originates from China and is important for the economy of southern China. Seeds from the cultivars LCDG, YAYC, and CR3 of Camellia oleifera were analyzed for their amount of 14 different fatty acids (unsaturated, monounsaturated, polyunsaturated, and saturated). In contrast to former investigations additional kinds of fatty acids could be isolated from Camellia oleifera seeds: The composition of this oil is very similar to olive oil, comprising 67.7-76.7 % oleic acid, 82-84 % unsaturated fatty acids, 68-77 % monounsaturated fatty acids, and 7-14 % polyunsaturated acids. Moreover, Camellia oleifera oil has many advantages to rapeseed oil, peanut oil, soybean oil, safflower seed oil, and especially pig oil.
Volatiles from hindgut extracts of males of the Qinghai spruce bark beetle, Ips nitidus, from different attack phases (phase 1: unpaired males and phases 2-4: males joined with one to three females) and hindgut extracts of mated females were analyzed by gas chromatography-mass spectrometry (GC-MS)/flame ionization detection (FID) with both polar and enantioselective columns. The GC-MS/FID analyses demonstrated that unpaired males from attack phase 1 (nuptial chamber constructed) produced 2-methyl-3-buten-2-ol, approx. 74%-(-)-ipsdienol, and (-)-cis-verbenol as major hindgut components, and (-)-trans-verbenol, (-)-ipsenol, (-)-verbenone, myrtenol, and 2-phenylethanol as minor or trace components. The quantities of 2-methyl-3-buten-2-ol and especially ipsdienol decreased after mating during phases 2-4, whereas the quantities of (-)-cis- and (-)-trans-verbenol did not change. In contrast, the quantity of (-)-ipsenol seemed to increase as mating activity progressed. After mating with three females (harem size = 3; phase 4), only trace to small amounts of male-specific compounds were detected from I. nitidus male hindguts. Chemical analysis of the hindgut extracts of mated females showed only trace amounts of semiochemicals. A field-trapping bioassay in Qinghai, China showed that the four-component "full blend" containing the three major components, 2-methyl-3-buten-2-ol, (+/-)-ipsdienol, and (-)-cis-verbenol, plus a minor component, (-)-trans-verbenol, caught significantly more I. nitidus (male/female = 1:2.2) than did the unbaited control and two binary blends. The replacement of (+/-)-ipsdienol with nearly enantiomerically pure (-)-ipsdienol in the "full blend" significantly reduced trap catches, which suggests that both enantiomers are needed for attraction. On the other hand, removal of (-)-trans-verbenol from the active "full blend" had no significant effect on trap catches. Our results suggest that the three major components, 2-methyl-3-buten-2-ol, 74%-(-)-ipsdienol, and (-)-cis-verbenol (at 7:2:1), produced by unpaired fed males, are likely the aggregation pheromone components of I. nitidus, thus representing the first characterization of an aggregation pheromone system of a bark beetle native solely to China.
Volatiles from male hindgut extracts of a newly described spruce bark beetle, Ips shangrila Cognato and Sun, from different attack phases were analyzed by GC-MS/ FID with both polar and enantioselective columns. The GC-MS/FID analyses showed that unmated males (Phase 1) or males mated with \3 females (Phases 2-4) produced 2-methyl-3-buten-2-ol and 99%-(?)-ipsdienol as major components, and (-)-cis-verbenol, (-)-trans-verbenol, myrtenol and 2-phenyl ethanol as minor or trace components. The release of these male-produced compounds was confirmed by the analysis on aeration sample of an I. shangrila infested wind-thrown spruce trunk. The quantities of 2-methyl-3-buten-2-ol, cis-verbenol and trans-verbenol from male hindgut extracts were almost unchanged or even slightly increased during gallery development, while ipsdienol decreased dramatically after mating with three females. No obvious Ips-related aggregation pheromone components were detected in the female hindgut extract. A field trapping bioassay in Qinghai, China, showed that the ternary blends containing 2-methyl-3-buten-2-ol, (-)-cis-verbenol and 97%-(?)-ipsdienol or (±)-ipsdienol, caught significantly more I. shangrila (#:$ = 1:2.14) than did the unbaited control. Replacing 97%-(?)-ipsdienol (close to the naturally produced enantiomeric ratio) with (±)-ipsdienol in the ternary blend seemed to reduce trap catches by 50%, but the difference was not statistically significant. Surprisingly, addition of (-)-trans-verbenol (at 0.2 mg/day) to the active ternary blends significantly reduced traps catches to the level not different from the unbaited control. Our results suggest that the two major components, 2-methyl-3-buten-2-ol and 99%-(?)-ipsdienol, plus a minor component, (-)-cis-verbenol, produced by fed males, are likely the aggregation pheromone components of I. shangrila.
Predicting changes in carbon and nutrient cycles in plantations requires a mechanistic understanding of the effects of stand age on soil quality and microbial communities. Here, we evaluated soil quality by using an integrated soil quality index (SQI) and traced the parallel shifts in fungal community composition using high‐throughput sequencing in a chronosequence of Chinese fir (Cunninghamia lanceolata) plantations (stand age of 3, 16, 25, 32, >80 years). Soil properties showed pronounced changes with stand age in the topsoil. Soil organic carbon (SOC), total nitrogen (TN) and available phosphorus (AP) were 2.1, 1.9 and 2.2 times higher, respectively, in the oldest stands than in the youngest stands. SQI of the top 5 cm increased logarithmically with stand age. Mycorrhizal fungi initially increased in younger stands, but then they were gradually replaced by saprotrophs in older stands due to larger litterfall. Strong positive correlations between saprotrophic fungi and key soil quality indicators, such as TN, AP and NH4+, confirmed that abundance of decomposers is tightly linked with higher soil quality. Mycorrhizal orders Thelephorales, Sebacinales and Russulales increased in abundance and raised the activity of acid phosphatase to mobilise limiting phosphorus from organic matter. Consequently, mycorrhizal fungi are especially relevant in younger stands to acquire nutrients to sustain tree productivity. In developed stands, however, saprotrophic fungi are crucial in recycling nutrients from the litter. Collectively, the increase of topsoil quality during the life cycle of Chinese fir plantations is closely linked with the observed transition of fungal communities from mycorrhizae to saprotrophs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.