The present study aimed to construct targeted cationic microbubbles (TCMBs) by synthesizing cationic microbubbles conjugated to an intercellular adhesion molecule-1 (ICAM-1) antibody, and then to use the TCMBs to deliver the angiopoietin-1 (Ang-1) gene into infarcted heart tissue using ultrasound-mediated microbubble destruction. It was hypothesized that the TCMBs would accumulate in higher numbers than non-targeted cationic microbubbles (CMBs) in the infarcted heart, and would therefore increase the efficiency of targeted Ang-1 gene transfection and promote angiogenesis. The results of the study demonstrated that the ability of TCMBs to target inflammatory endothelial cells was 18.4-fold higher than that of the CMBs in vitro. The accumulation of TCMBs was greater than that of CMBs in TNF-α-stimulated human umbilical cord veins, indicated by a 212% higher acoustic intensity. In vivo, the TCMBs specifically accumulated in the myocardial infarct area in a rabbit model. Three days after ultrasound microbubble-mediated gene transfection, Ang-1 protein expression in the TCMB group was 2.7-fold higher than that of the CMB group. Angiogenesis, the thickness of the infarct region and the heart function of the TCMB group were all significantly improved compared with those in the CMB and control groups at 4 weeks following gene transfection (all P<0.01). Therefore, the results of the current study demonstrate that ultrasound-mediated TCMB destruction effectively delivered the Ang-1 gene to the infarcted myocardium, resulting in improved cardiac morphology and function in the animal model. Ultrasound-mediated TCMB destruction is a promising strategy for improving gene therapy in the future.
Ultrasound-targeted microbubble destruction (UTMD) can promote the entry of plasmid DNA (pDNA) into the cell cytoplasm, by increasing the permeability of the cell membrane. But the transfection efficiency remains low due to inability of the pDNA to enter the nucleus. Various methods have been explored to improve the UTMD transfection efficiency, but with little success. In cells, the classic nuclear localization signal (cNLS) peptide is an amino acid sequence that signals proteins that are due for nuclear transport. The present study aimed to investigate whether binding of a cNLS peptide to the pDNA may improve the transfection efficiency of UTMD. Four experimental groups were analyzed: Control group (UTMD + pDNA), group with cNLS (UTMD + pDNA + cNLS), group with mutated NLS (mNLS; UTMD + pDNA + mNLS), and group with cNLS and the nuclear import blocker, wheat germ agglutinin (WGA; UTMD + pDNA + cNLS + WGA). The NLS was labeled by fluorescein isothiocyanate, whereas pDNA was labeled with Cy3. Different molar ratios were tested for the NLS and pDNA combination in order to achieve optimal binding of the two molecules. Human umbilical vein endothelial cells were then transfected using the optimum ultrasonic irradiation parameters and NLS/pDNA molar ratio. At 6 h post-transfection, the rates of Cy3-labeled pDNA inside the cells and their nuclei were detected by flow cytometry and laser confocal microscopy, and the cellular vs. nuclear uptake of pDNA was calculated. In order to further evaluate the effect of NLS on UTMD-mediated gene transfection, the transfection efficiency and relative expression levels of mRNA and protein were detected at 48 h post-transfection. The results demonstrated that the optimal molar ratio of NLS with pDNA was 104:1. The rates of pDNA successful entry into the cell and nucleus were significantly higher in the cNLS group compared with the control group. The transfection efficiency, and relative expression levels of mRNA and protein from the plasmid were significantly increased in the cNLS group compared with the control group. The mNLS group displayed no significant difference compared with the control group, while the WGA group exhibited significant inhibition in most indicators of transfection efficiency compared to the cNLS group. These results suggest that combining a cNLS peptide with pDNA during UTMD-mediated transfection significantly improved transfection efficiency. Thus, a cNLS peptide may be an important mediator and a new strategy in enhancing the efficiency of UTMD-mediated gene transfection.
Treatment of myocardial infarction (MI) remains a major challenge. The chemokine family plays an important role in cardiac injury, repair, and remodeling following MI, while stromal cell‐derived factor‐1 alpha (SDF‐1α) is the most promising therapeutic target. This study aimed to increase SDF‐1α expression using a novel gene delivery system and further explore its effect on MI treatment. In this study, two kinds of plasmids, human SDF‐1α plasmid (phSDF‐1α) and human SDF‐1α‐ nuclear factor κB plasmid (phSDF‐1α‐NFκB), were constructed and loaded onto cationic microbubble carriers, and the plasmids were released into MI rabbits by ultrasound‐targeted microbubble destruction. The transfection efficiency of SDF‐1α and the degree of heart repair were further explored and compared. In the MI rabbit models, transfection with phSDF‐1α‐NFκB resulted in higher SDF‐1α expression in peri‐infarct area compared with transfection with phSDF‐1α or no transfection. Upregulation of SDF‐1α was shown beneficial to these MI rabbit models, as demonstrated with better recovery of cardiac function, greater perfusion of the myocardium, more neovascularization, smaller infarction size and thicker infarct wall 1 month after treatment. Ultrasound‐targeted cationic microbubbles combined with the NFκB binding motif could increase SDF‐1α gene transfection, which would play a protective role after MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.