We report in this communication the two-photon absorption (TPA)-induced room-temperature lasing performance of ZnO nanowires. Under femtosecond pulse-excitation at lambda = 700 nm in the infrared regime, a remarkably low threshold of 160 microJ/cm(2) was observed for the TPA-induced lasing action, which is of the same order of magnitude as that measured for the linear lasing process. Time-resolved photoluminescence characterization of two-photon pumped ZnO nanowires reveals the presence of a fast decay (3-4 ps) in the stimulated emission as compared to the slow decay (50-70 ps) for the spontaneous emission. The TPA process in ZnO nanowires was characterized with the nonlinear transmission measurement, which uncovers an enhanced TPA coefficient, about 14.7 times larger than that of bulk ZnO samples. The observed TPA enhancement in ZnO nanowires accounts for the low threshold lasing behavior, and has been attributed to the intensified optical field confined within the nanowire waveguides.
We present a simple fabrication method for the realization of suspended GaAs nanomembranes for cavity quantum optomechanics experiments. GaAs nanomembranes with an area of 1.36 mm by 1.91 mm and a thickness of 160 nm are obtained by using a two-step selective wet-etching technique. The frequency noise spectrum reveals several mechanical modes in the kilohertz regime with mechanical Q-factors up to 2,300,000 at room temperature. The measured mechanical mode profiles agree well with a taut rectangular drumhead model. Our results show that GaAs nanomembranes provide a promising path towards quantum optical control of massive nanomechanical systems.Comment: 3 pages, 3 figure
Two-dimensional transition-metal dichalcogenides (TMDC) are of great interest for on-chip nanophotonics due to their unique optoelectronic properties. Here, we propose and realize coupling of tungsten diselenide (WSe 2 ) monolayers to circular Bragg grating structures to achieve enhanced emission. The interaction between WSe 2 and the resonant mode of the structure results in Purcell-enhanced emission, and the symmetric geometrical structure improves the directionality of the out-coupling stream of emitted photons. Furthermore, this hybrid structure produces a record high contrast of the spin valley readout (>40%) revealed by the polarizationresolved photoluminescence (PL) measurements. Our results are promising for onchip integration of TMDC monolayers with optical resonators for nanophotonic circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.