ICT may be the safest and most effective method for delivering stem cells and improving functional outcome in SCI when no limits are placed on the number of cells transplanted. As research on enhancing engraftment rates advances, further improvement of functional outcome can be expected.
ObjectiveThe purpose of this study is to find the optimal stiffness and volume of bone cement and their biomechanical effects on the adjacent vertebrae to determine a better strategy for conducting vertebroplasty.MethodsA three-dimensional finite-element model of a functional spinal unit was developed using computed tomography scans of a normal motion segment, comprising the T11, T12 and L1 vertebrae. Volumes of bone cement, with appropriate mechanical properties, were inserted into the trabecular core of the T12 vertebra. Parametric studies were done by varying the volume and stiffness of the bone cement.ResultsWhen the bone cement filling volume reached 30% of the volume of a vertebral body, the level of stiffness was restored to that of normal bone, and when higher bone cement exceeded 30% of the volume, the result was stiffness in excess of that of normal bone. When the bone cement volume was varied, local stress in the bony structures (cortical shell, trabecular bone and endplate) of each vertebra monotonically increased. Low-modulus bone cement has the effect of reducing strain in the augmented body, but only in cases of relatively high volumes of bone cement (>50%). Furthermore, varying the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies.ConclusionThe volume of cement was considered to be the most important determinant in endplate fracture. Changing the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.