Endoscopic ultrasonography-guided ethanol ablation therapy seems to be a safe treatment modality. However, it was only effective in 11% of IPMNs. Therefore, the clinical application should be very limited for certain patients who could not tolerate the surgical treatment.
A numerical study has been carried out to understand the influences of barrier arrangements on the discharge characteristics of dielectric barrier discharge (DBD). A 1.5-dimensional (1.5-D) modeling is considered in the arrangements of bare, single-barrier, and double-barrier electrodes while a two-dimensional (2-D) approach is employed in a configuration of ferroelectric packed discharge (FPD). Numerical simulations show that the evolution of microdischarges in DBD occurs sequentially in the three distinctive phases of avalanche, streamer, and decay, and that the dielectric barriers make streamer discharges stabilized and sustained in lowered electric fields without transition to spark compared with no barrier case. Especially, the highly nonuniform strong electric field effect created by the pellets appears to be formed in FPD, which enables the flue gas cleaning to be expected to enhance the decomposition efficiency. Index Terms-Barrier arrangement effect, dielectric barrier discharge (DBD), ferroelectric packed discharge (FPD), numerical modeling.
A three-dimensional (3-D) transient numerical model has been developed to investigate the arc root rotation driven by an external magnetic field and its influences on the thermal plasma characteristics in the nontransferred plasma torches with rod-type cathode (RTC) and well-type cathode (WTC). The 3-D distributions of electric current density are obtained from a current continuity equation along with the generalized Ohm's law, while the magnetic fields induced by the arc, superimposed on the external field, are calculated by a magnetic vector potential equation. The coupled interactions between the arc and the plasma flow are described in the framework of time-dependent magnetohydrodynamic (MHD) equations in conjunction with a -turbulence model. Numerical simulations have been focused on finding the magnetically driven rotating velocities of the anode arc root for the RTC torch and the cathode arc root for the WTC torch, respectively. The external application of magnetic field turns out to be a practical method for rotating the arc root rapidly to reduce the electrode erosion in the typical torch operation. The 3-D simulations also reveal that a large swirling motion is induced by the external magnetic field, thereby the distribution of plasma temperature is helically distorted. In addition, it is shown for the RTC torch that the rotation velocity of arc root rises in proportion to the square root of external field strength and that it increases with input current but decreases with gas flow rate.Index Terms-Arc root rotation, external magnetic field, nontransferred torch, numerical modeling, thermal plasma, threedimensional, well-type and rod-type electrodes.
The DIII-D programme has recently initiated an effort to provide suitably scaled experimental evaluations of four primary ITER operational scenarios. New and unique features of this work are that the plasmas incorporate essential features of the ITER scenarios and anticipated operating characteristics; e.g. the plasma cross-section, aspect ratio and value of I/aB of the DIII-D discharges match the ITER design, with size reduced by a factor of 3.7. Key aspects of all four scenarios, such as target values for βN and H98, have been replicated successfully on DIII-D, providing an improved and unified physics basis for transport and stability modelling, as well as for performance extrapolation to ITER. In all four scenarios, normalized performance equals or closely approaches that required to realize the physics and technology goals of ITER, and projections of the DIII-D discharges are consistent with ITER achieving its goals of ⩾400 MW of fusion power production and Q ⩾ 10. These studies also address many of the key physics issues related to the ITER design, including the L–H transition power threshold, the size of edge localized modes, pedestal parameter scaling, the impact of tearing modes on confinement and disruptivity, beta limits and the required capabilities of the plasma control system. An example of direct influence on the ITER design from this work is a modification of the physics requirements for the poloidal field coil set at 15 MA, based on observations that the inductance in the baseline scenario case evolves to a value that lies outside the original ITER specification.
Although coffee is known to have antioxidant, anti-inflammatory, and antitumor properties, there have been few reports about the effect and mechanism of coffee compounds in colorectal cancer. Heat shock proteins (HSPs) are molecular chaperones that prevent cell death. Their expression is significantly elevated in many tumors and is accompanied by increased cell proliferation, metastasis and poor response to chemotherapy. In this study, we investigated the cytotoxicity of four bioactive compounds in coffee, namely, caffeine, caffeic acid, chlorogenic acid, and kahweol, in HT-29 human colon adenocarcinoma cells. Only kahweol showed significant cytotoxicity. Specifically, kahweol increased the expression of caspase-3, a pro-apoptotic factor, and decreased the expression of anti-apoptotic factors, such as Bcl-2 and phosphorylated Akt. In addition, kahweol significantly attenuated the expression of HSP70. Inhibition of HSP70 activity with triptolide increased kahweol-induced cytotoxicity. In contrast, overexpression of HSP70 significantly reduced kahweol-induced cell death. Taken together, these results demonstrate that kahweol inhibits colorectal tumor cell growth by promoting apoptosis and suppressing HSP70 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.