Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic n-dimensional ordinary differential equations. Assuming R<1, where R is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity T2q poly(logT,logn,log1/ϵ)/ϵ, where T is the evolution time, ϵ is the allowed error, and q measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for R≥2. Finally, we discuss potential applications, showing that the R<1 condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of R.
Recently developed quantum algorithms address computational challenges in numerical analysis by performing linear algebra in Hilbert space. Such algorithms can produce a quantum state proportional to the solution of a d-dimensional system of linear equations or linear differential equations with complexity poly(log d). While several of these algorithms approximate the solution to within ǫ with complexity poly(log(1/ǫ)), no such algorithm was previously known for differential equations with time-dependent coefficients. Here we develop a quantum algorithm for linear ordinary differential equations based on so-called spectral methods, an alternative to finite difference methods that approximates the solution globally. Using this approach, we give a quantum algorithm for time-dependent initial and boundary value problems with complexity poly(log d, log(1/ǫ)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.