For symmetrically dividing cells, large variations in the cell cycle time are typical, even among clonal cells. The consequence of this variation is important in stem cell differentiation, tissue and organ size control, and cancer development, where cell division rates ultimately determine the cell population. We explore the connection between cell cycle time variation and populationlevel fluctuations using simple stochastic models. We find that standard population models with constant division and death rates fail to predict the level of population fluctuation. Instead, variations in the cell division time contribute to population fluctuations. An age-dependent birth and death model allows us to compute the mean squared fluctuation or the population dispersion as a function of time. This dispersion grows exponentially with time, but scales with the population. We also find a relationship between the dispersion and the cell cycle time distribution for synchronized cell populations. The model can easily be generalized to study populations involving cell differentiation and competitive growth situations.
BackgroundMalaria is a significant public health issue in Papua New Guinea (PNG) as the burden is among the highest in Asia and the Pacific region. Though PNG’s vulnerability to climate change and sensitivity of malaria mosquitoes to weather are well-documented, there are few in-depth epidemiological studies conducted on the potential impacts of climate on malaria incidence in the country.MethodsThis study explored what and how local weather and global climate variability impact on malaria incidence in five regions of PNG. Time series methods were applied to evaluate the associations of malaria incidence with weather and climate factors, respectively. Local weather factors including precipitation and temperature and global climate phenomena such as El Niño-Southern Oscillation (ENSO), the ENSO Modoki, the Southern Annular Mode, and the Indian Ocean Dipole were considered in analyses.ResultsThe results showed that malaria incidence was associated with local weather factors in most regions but at the different lag times and in directions. Meanwhile, there were trends in associations with global climate factors by geographical locations of study sites.ConclusionsOverall heterogeneous associations suggest the importance of location-specific approaches in PNG not only for further investigations but also public health interventions in repose to the potential impacts arising from climate change.Electronic supplementary materialThe online version of this article (doi:10.1186/s41182-016-0021-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.