This study investigated the effect of magnolol, a compound isolated from Magnolia officinalis, on lipolysis in lipid-laden RAW 264.7 macrophages. Treatment of macrophages with magnolol led to dissolution of lipid droplets. This phenomenon was accompanied by a dose-dependent release of glycerol and cholesterol and a concomitant reduction in intracellular levels of glycerol and cholesterol. Furthermore, adipose differentiation-related protein (ADRP), a lipid droplet-associated protein, was down-regulated by magnolol in a dose- and time-dependent manner by Western blot analysis. Immunofluorescence studies also showed that ADRP became detached from the surface of lipid droplets after magnolol treatment. The lipolytic effect of magnolol was not mediated through the cAMP-protein kinase A (PKA) system, an authentic lipolytic pathway for macrophages, since magnolol did not induce an increase of intracellular cAMP levels, and pretreatment with either of PKA inhibitors, PKI and KT5720, did not abrogate the lipolytic response to magnolol. We conclude that magnolol induce-lipolysis of lipid-laden macrophages by down-regulation of ADRP expression and detachment of ADRP from the lipid droplet surface by a cAMP-independent mechanism. Lipolysis of lipid-laden macrophages may occur when the amount of ADRP on the surface of lipid droplets is not enough to stabilize the lipid droplets.
In this study, we examined the effects of shark cartilage extract on the attachment and spreading properties and the focal adhesion structure of cultured bovine pulmonary artery endothelial cells. Treatment with cartilage extract resulted in cell detachment from the substratum. Immunofluorescence staining of those treated cells that remained attached showed that, instead of being present in both central and peripheral focal adhesions as in control cells, both integrin alpha(v)beta(3) and vinculin were found only in peripheral focal adhesion and thinner actin filament bundles were seen. In addition to causing cell detachment, cartilage extract partially inhibited the initial adherence of the cells to the substratum in a dose-dependent manner. Integrin alpha(v)beta(3) and vinculin staining of these cells also showed a peripheral focal adhesion distribution pattern. Vitronectin induced cell spreading in the absence of serum, but was blocked by simultaneous incubation with cartilage extract, which was shown to inhibit both integrin alpha(v)beta(3) and vinculin recruitment to focal adhesion and the formation of stress fibers. Dot binding assays showed that these inhibitory effects on cell attachment and spreading were not due to direct binding of cartilage extract components to integrin alpha(v)beta(3) or vitronectin. Shark cartilage chondroitin sulfate had no inhibitory effect on either cell attachment or spreading of endothelial cells. These results show that the inhibitory effects of cartilage extract on cell attachment and spreading are mediated by modification of the organization of focal adhesion proteins.
Using a xanthophore cytoskeletal preparation as immunogen, we have produced a monoclonal antibody, A2, which recognized a 160 kDa protein in 3T3 fibroblasts. This protein makes up a cytoplasmic filamentous system, which colocalizes with vimentin filaments. When microtubules and actin filaments are dissolved by high salt extraction, staining with antibody A2 is unaffected. Immunoblot analysis confirms that the 160 kDa protein is co-isolated with vimentin during in vivo high salt extraction. Following vinblastine treatment, both the 160 kDa protein and vimentin become localized to perinuclear caps, as do other intermediate filaments and their associated proteins; after vinblastine removal, the immunostaining produced by A2 becomes filamentous. Immunoelectron microscopy demonstrates that antibody A2 stains a filament system with a diameter of about 10 nm. Our observations suggest that the 160 kDa protein may be a new vimentin-associated protein which differs from the intermediate filament-associated proteins previously reported, and is widely distributed in several cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.