By using a fluorescence in situ hybridization technique we revealed that for nine different q-arm telomere markers the positioning of chromosomes in human G(1) interphase nuclei was chromosome size-dependent. The q-arm telomeres of large chromosomes are more peripherally located than telomeres on small chromosomes. This highly organized arrangement of chromatin within the human nucleus was discovered by determining the x and y coordinates of the hybridization sites and calculating the root-mean-square radial distance to the nuclear centers in human fibroblasts. We demonstrate here that global organization within the G(1) interphase nucleus is affected by one of the most fundamental physical quantities-chromosome size or mass-and propose two biophysical models, a volume exclusion model and a mitotic preset model, to explain our finding.
A survey of biophysical and biomedical applications of free-electron lasers ͑FELs͒ is presented. FELs are pulsed light sources, collectively operating from the microwave through the x-ray range. This accelerator-based technology spans gaps in wavelength, pulse structure, and optical power left by conventional sources. FELs are continuously tunable and can produce high-average and high-peak power. Collectively, FEL pulses range from quasicontinuous to subpicosecond, in some cases with complex superpulse structures. Any given FEL, however, has a more restricted set of operational parameters. FELs with high-peak and high-average power are enabling biophysical and biomedical investigations of infrared tissue ablation. A midinfrared FEL has been upgraded to meet the standards of a medical laser and is serving as a surgical tool in ophthalmology and human neurosurgery. The ultrashort pulses produced by infrared or ultraviolet FELs are useful for biophysical investigations, both one-color time-resolved spectroscopy and when coupled with other light sources, for two-color time-resolved spectroscopy. FELs are being used to drive soft ionization processes in mass spectrometry. Certain FELs have high repetition rates that are beneficial for some biophysical and biomedical applications, but confound research for other applications. Infrared FELs have been used as sources for inverse Compton scattering to produce a pulsed, tunable, monochromatic x-ray source for medical imaging and structural biology. FEL research and FEL applications research have allowed the specification of spin-off technologies. On the horizon is the next generation of FELs, which is aimed at producing ultrashort, tunable x rays by self-amplified spontaneous emission with potential applications in biology.
The FEL at low energy performs an optic nerve sheath fenestration in a small space with ease. Both FEL and knife incisions cause a similar rapid glial response near the fenestration site that remains 1 month later.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.