Abstract:Heat dissipation per unit volume has grown rapidly, as the size of modern electronic devices has continued to decrease. The air flow induced by an oscillating cantilever blade enhances the heat transfer performance of high heat density devices. The heat transfer improvement mainly depends on the velocity magnitude and distribution of air streams induced by the vibrating blade. Accordingly, this study numerically and experimentally examines the time-varying flow characteristics of a vibrating cantilever for five blade types. The blades are rectangular or trapezoidal with various widths and actuated at various frequencies. The fluid domain is numerically discretized using a dynamic meshing scheme to model the three-dimensional time-varying vibrating blade. The experiment utilizes nine hot-wire velocity meters to measure the average velocities. The flow structure with streamlines and velocity contours of the induced air flow are determined at various section planes. The results show that a major maximum-velocity region appears around the blade tip and that four minor local-maximum-velocity regions appear at the four corners. In addition, the width and width ratio of the blade significantly affects the velocity distribution of the flow induced by the vibrating cantilever blade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.