SummaryWe demonstrate, using the seed-coating method, that melatonin promotes soybean growth, seed production, and stress tolerance by regulating cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism.
Data and materials availability: Antibody sequences have been deposited to GenBank under accession numbers MN643173 through MN643554. The cryo-EM maps and refined coordinates were deposited in the EMDB and RCSB PDB databases, respectively, under the following accession numbers: DH270 UCA (EMD-20817 and PDB ID 6UM5), DH270.6 (EMD-20818 and PDB ID 6UM6), and DH270.mu1(EMD-20819 and PDB ID 6UM7). The ARMADiLLO program is available for download at http://sites.duke.edu/ ARMADiLLO. All flow cytometry data are available upon request. All other data are in the main and supplementary figures and text.
Heterostructure based interface engineering has been proved an effective method for finding new superconducting systems and raising superconductivity transition temperature (T C ) 1-7 . In previous work on one unit-cell (UC) thick FeSe films on SrTiO 3 (STO) substrate, a superconducting-like energy gap as large as 20 meV 8 , was revealed by in situ scanning tunneling microscopy/spectroscopy (STM/STS). Angle resolved photoemission spectroscopy (ARPES) further revealed a nearly isotropic gap of above 15 meV, which closes at a temperature of 65 ± 5 K 9-11 . If this transition is indeed the superconducting transition, then the 1-UC FeSe represents the thinnest high T C superconductor discovered so far. However, up to date direct transport measurement of the
1-UC FeSe films has not been reported, mainly because growth of large scale 1-UC FeSe films ischallenging and the 1-UC FeSe films are too thin to survive in atmosphere. In this work, we successfully prepared 1-UC FeSe films on insulating STO substrates with non-superconducting FeTe protection layers. By direct transport and magnetic measurements, we provide definitive evidence for high temperature superconductivity in the 1-UC FeSe films with an onset T C above 40 K and a extremely large critical current density J C ~ 1.7×10 6 A/cm 2 at 2 K. Our work may pave the way to enhancing and tailoring superconductivity by interface engineering.The FeSe films and FeTe protection layer are grown by molecular beam epitaxy (MBE) (see Methods).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.