This paper employs a new second-order cone (SOC) model as the uncertainty set to capture non-Gaussian local variations. Then using robust gate sizing as an example, we describe the detailed procedures of robust design with a budget of uncertainty. For a pre-selected probability level of yield protection, this robust method translates uncertainty budgeting problems into regular robust optimization problems. More importantly, under the assumption of non-Gaussian distributions, we show that within-die variations will lead to varying sizes of uncertainty sets at different nominal values. By using this new model of uncertainty estimation, the robust gate sizing problem can be formulated as a Geometric Program (GP) and therefore efficiently solved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.