The development of industrial Internet of Things (IIoT), big data, and artificial intelligence technologies is leading to a major change in the production system. The change is being propagated into the wave of transforming the existing system with a vertical structure into the corresponding horizontal platform or middleware. Accordingly, the way of acquiring IIoT data from an individual system is being altered to the way of being increasingly centralized through an integrated middleware of a scalable server or through a large platform. That said, middleware-based IIoT data acquisition must consider multiple factors, such as infrastructure (e.g., operation environment and network), protocol heterogeneity, interoperability (e.g., links with legacy systems), real-time, and security. This manuscript explains these five aspects in detail and provides a taxonomy of eighteen state-of-the-art IIoT data-acquisition middleware systems based on these aspects. To validate one of these aspects (network), we present our evaluation results at a real production site where IIoT data-acquisition loss rates are compared between wireless (long-term evolution) and wired networks. As a result, the wired communication can be more suitable for centralized IIoT data-acquisition middleware than wireless networks. Finally, we discuss several challenges in establishing the best IIoT data-acquisition middleware in a centralized way.
In this paper, a localization algorithm and an autonomous controller for PETASUS system II which is an underwater vehicle-manipulator system, are proposed. To estimate its position and to identify manipulation targets in a structured environment, a multi-rate extended Kalman filter is developed, where map information and data from inertial sensors, sonar sensors, and vision sensors are used. In addition, a three layered control structure is proposed as a controller for autonomy. By this controller, PETASUS system II is able to generate waypoints and make decisions on its own behaviors. Experiment results are provided for verifying proposed algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.