This study was designed to compare the acute response of mixed muscle protein synthesis (MPS) to rapidly (i.e., whey hydrolysate and soy) and slowly (i.e., micellar casein) digested proteins both at rest and after resistance exercise. Three groups of healthy young men (n = 6 per group) performed a bout of unilateral leg resistance exercise followed by the consumption of a drink containing an equivalent content of essential amino acids (10 g) as either whey hydrolysate, micellar casein, or soy protein isolate. Mixed MPS was determined by a primed constant infusion of l-[ring-(13)C(6)]phenylalanine. Ingestion of whey protein resulted in a larger increase in blood essential amino acid, branched-chain amino acid, and leucine concentrations than either casein or soy (P < 0.05). Mixed MPS at rest (determined in the nonexercised leg) was higher with ingestion of faster proteins (whey = 0.091 +/- 0.015, soy = 0.078 +/- 0.014, casein = 0.047 +/- 0.008%/h); MPS after consumption of whey was approximately 93% greater than casein (P < 0.01) and approximately 18% greater than soy (P = 0.067). A similar result was observed after exercise (whey > soy > casein); MPS following whey consumption was approximately 122% greater than casein (P < 0.01) and 31% greater than soy (P < 0.05). MPS was also greater with soy consumption at rest (64%) and following resistance exercise (69%) compared with casein (both P < 0.01). We conclude that the feeding-induced simulation of MPS in young men is greater after whey hydrolysate or soy protein consumption than casein both at rest and after resistance exercise; moreover, despite both being fast proteins, whey hydrolysate stimulated MPS to a greater degree than soy after resistance exercise. These differences may be related to how quickly the proteins are digested (i.e., fast vs. slow) or possibly to small differences in leucine content of each protein.
Ingestion of 20 g intact protein is sufficient to maximally stimulate MPS and APS after resistance exercise. Phosphorylation of candidate signaling proteins was not enhanced with any dose of protein ingested, which suggested that the stimulation of MPS after resistance exercise may be related to amino acid availability. Finally, dietary protein consumed after exercise in excess of the rate at which it can be incorporated into tissue protein stimulates irreversible oxidation.
Background: Acute consumption of fat-free fluid milk after resistance exercise promotes a greater positive protein balance than does soy protein.Objective: We aimed to determine the long-term consequences of milk or soy protein or equivalent energy consumption on traininginduced lean mass accretion. Design: We recruited 56 healthy young men who trained 5 d/wk for 12 wk on a rotating split-body resistance exercise program in a parallel 3-group longitudinal design. Subjects were randomly assigned to consume drinks immediately and again 1 h after exercise: fat-free milk (Milk; n ҃ 18); fat-free soy protein (Soy; n ҃ 19) that was isoenergetic, isonitrogenous, and macronutrient ratio matched to Milk; or maltodextrin that was isoenergetic with Milk and Soy (control group; n ҃ 19). Results: Muscle fiber size, maximal strength, and body composition by dual-energy X-ray absorptiometry (DXA) were measured before and after training. No between-group differences were seen in strength. Type II muscle fiber area increased in all groups with training, but with greater increases in the Milk group than in both the Soy and control groups (P 0.05). Type I muscle fiber area increased after training only in the Milk and Soy groups, with the increase in the Milk group being greater than that in the control group (P 0.05). DXA-measured fat-and bone-free mass increased in all groups, with a greater increase in the Milk group than in both the Soy and control groups (P 0.05). Conclusion: We conclude that chronic postexercise consumption of milk promotes greater hypertrophy during the early stages of resistance training in novice weightlifters when compared with isoenergetic soy or carbohydrate consumption.Am J Clin Nutr 2007; 86:373-81.
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ± s.e.m.) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg −1 h −1 ). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 ± 0.003: non-immobilized, 0.037 ± 0.003% h −1 ; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr 576/577 ) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the 'anabolic resistance' to amino acids can account for much of immobilization-induced muscle atrophy.
We aimed to determine whether there is a differential stimulation of the contractile myofibrillar and the cellular sarcoplasmic proteins after ingestion of protein and how this is affected by resistance exercise. Fasted (FAST) muscle protein synthesis was measured in seven healthy young men with a primed constant infusion of l-[ring-13 C 6 ]phenylalanine. Participants then performed an intense bout of unilateral resistance exercise followed by the consumption of 25 g of whey protein to maximally stimulate protein synthesis. In the rested (FED) leg myofibrillar (MYO) protein synthesis was elevated (P < 0.01) above FAST at 3 h (∼163%) but not at 1 and 5 h (P > 0.05). In contrast, MYO protein synthesis in the exercised (FED-EX) leg was stimulated above FAST at 1, 3 and 5 h (∼100, 216, and 229%, respectively; P < 0.01) with the increase at 5 h being greater than FED (P < 0.01). Thus, the synthesis of muscle contractile proteins is stimulated by both feeding and resistance exercise early (1 h) but has a greater duration and amplitude after resistance exercise. Sarcoplasmic (SARC) protein synthesis was similarly elevated (P < 0.01) above FAST by ∼104% at 3 h in both FED and FED-EX suggesting SARC protein synthesis is stimulated by feeding but that this response is not augmented by resistance exercise. In conclusion, myofibrillar and sarcoplasmic protein synthesis are similarly, but transiently, stimulated with protein feeding. In contrast, resistance exercise rapidly stimulates and sustains the synthesis of only the myofibrillar protein fraction after protein ingestion. These data highlight the importance of measuring the synthetic response of specific muscle protein fractions when examining the effects of exercise and nutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.