Although a causal role of genetic alterations in human cancer is well established, it is still unclear whether dietary fat can modulate cancer risk in a predisposed population. Epidemiological studies suggest that diets rich in omega-3 polyunsaturated fatty acids reduce cancer incidence. To determine the influence of fatty acids on prostate cancer risk in animals with a defined genetic lesion, we used prostate-specific Pten-knockout mice, an immune-competent, orthotopic prostate cancer model, and diets with defined polyunsaturated fatty acid levels. We found that omega-3 fatty acids reduced prostate tumor growth, slowed histopathological progression, and increased survival, whereas omega-6 fatty acids had opposite effects. Introducing an omega-3 desaturase, which converts omega-6 to omega-3 fatty acids, into the Pten-knockout mice reduced tumor growth similarly to the omega-3 diet. Tumors from mice on the omega-3 diet had lower proportions of phosphorylated Bad and higher apoptotic indexes compared with those from mice on omega-6 diet. Knockdown of Bad eliminated omega-3-induced cell death, and introduction of exogenous Bad restored the sensitivity to omega-3 fatty acids. Our data suggest that modulation of prostate cancer development by polyunsaturated fatty acids is mediated in part through Bad-dependent apoptosis. This study highlights the importance of gene-diet interactions in prostate cancer.
Mortierella alpina is an oleaginous fungus which can produce lipids accounting for up to 50% of its dry weight in the form of triacylglycerols. It is used commercially for the production of arachidonic acid. Using a combination of high throughput sequencing and lipid profiling, we have assembled the M. alpina genome, mapped its lipogenesis pathway and determined its major lipid species. The 38.38 Mb M. alpina genome shows a high degree of gene duplications. Approximately 50% of its 12,796 gene models, and 60% of genes in the predicted lipogenesis pathway, belong to multigene families. Notably, M. alpina has 18 lipase genes, of which 11 contain the class 2 lipase domain and may share a similar function. M. alpina's fatty acid synthase is a single polypeptide containing all of the catalytic domains required for fatty acid synthesis from acetyl-CoA and malonyl-CoA, whereas in many fungi this enzyme is comprised of two polypeptides. Major lipids were profiled to confirm the products predicted in the lipogenesis pathway. M. alpina produces a complex mixture of glycerolipids, glycerophospholipids and sphingolipids. In contrast, only two major sterol lipids, desmosterol and 24(28)-methylene-cholesterol, were detected. Phylogenetic analysis based on genes involved in lipid metabolism suggests that oleaginous fungi may have acquired their lipogenic capacity during evolution after the divergence of Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. Our study provides the first draft genome and comprehensive lipid profile for M. alpina, and lays the foundation for possible genetic engineering of M. alpina to produce higher levels and diverse contents of dietary lipids.
Epidermal growth factor receptor (EGFR) and androgen receptor (AR) pathways play pivotal roles in prostate cancer progression. Therefore, agents with dual-targeting ability may have important therapeutic potential. Decorin, a proteoglycan present in the tumor microenvironment, is known to regulate matrix assembly, growth factor binding, and receptor tyrosine kinase activity. Here, we show that in prostate-specific Pten(P-/-) mice, a genetically defined, immune-competent mouse model of prostate cancer, systemic delivery of decorin inhibits tumor progression by targeting cell proliferation and survival pathways. Moreover, in human prostate cancer cells, we show that decorin specifically inhibits EGFR and AR phosphorylation and cross talk between these pathways. This prevents AR nuclear translocation and inhibits the production of prostate specific antigen. Further, the phosphatidylinositol-3 kinase (PI3K)/Akt cell survival pathway is suppressed leading to tumor cell apoptosis. Those findings highlight the effectiveness of decorin in the presence of a powerful genetic cancer risk and implicate decorin as a potential new agent for prostate cancer therapy by targeting EGFR/AR-PI3K-Akt pathways.
The mammary gland is one of the few adult tissues that strongly induce de novo fatty acid synthesis upon physiological stimulation, suggesting that fatty acid is important for milk production during lactation. The committed enzyme to perform this function is fatty acid synthase (FASN). To determine whether de novo fatty acid synthesis is obligatory or dietary fat is sufficient for mammary gland development and function during lactation, Fasn was specifically knocked out in mouse mammary epithelial cells. We found that deletion of Fasn hindered the development and induced the premature involution of the lactating mammary gland and significantly decreased medium- and long-chain fatty acids and total fatty acid contents in the milk. Consequently, pups nursing from Fasn knockout mothers experienced growth retardation and preweanling death, which was rescued by cross-fostering pups to a lactating wild-type mother. These results demonstrate that FASN is essential for the development, functional competence, and maintenance of the lactating mammary gland.
A common treatment of advanced prostate cancer involves the deprivation of androgens. Despite the initial response to hormonal therapy, eventually all the patients relapse. In the present study, we sought to determine whether dietary polyunsaturated fatty acid (PUFA) affects the development of castration-resistant prostate cancer. Cell culture, patient tissue microarray, allograft, xenograft, prostate-specific Pten knockout and omega-3 desaturase transgenic mouse models in conjunction with dietary manipulation, gene knockdown and knockout approaches were used to determine the effect of dietary PUFA on castration-resistant Pten-null prostate cancer. We found that deletion of Pten increased androgen receptor (AR) expression and Pten-null prostate cells were castration resistant. Omega-3 PUFA slowed down the growth of castration-resistant tumors as compared with omega-6 PUFA. Omega-3 PUFA decreased AR protein to a similar extent in tumor cell cytosolic and nuclear fractions but had no effect on AR messenger RNA level. Omega-3 PUFA treatment appeared to accelerate AR protein degradation, which could be blocked by proteasome inhibitor MG132. Knockdown of AR significantly slowed down prostate cancer cell proliferation in the absence of androgens. Our data suggest that omega-3 PUFA inhibits castration-resistant prostate cancer in part by accelerating proteasome-dependent degradation of the AR protein. Dietary omega-3 PUFA supplementation in conjunction with androgen ablation may significantly delay the development of castration-resistant prostate cancer in patients compared with androgen ablation alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.