Recently, tremendous strides have been made in generic object detection when used to detect faces, and there are still some remaining challenges. In this paper, a novel method is proposed named multilevel single stage network for face detection (MSNFD). Three breakthroughs are made in this research. Firstly, multilevel network is introduced into face detection to improve the efficiency of anchoring faces. Secondly, enhanced feature module is adopted to allow more feature information to be collected. Finally, two-stage weight loss function is employed to balance network of different levels. Experimental results on the WIDER FACE and FDDB datasets confirm that MSNFD has competitive accuracy to the mainstream methods, while keeping real-time performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.