In a quantum network involving multiple communicating parties, an important goal is to establish high-quality pairwise entanglement among the users without introducing multiple entangled-photon sources which would necessarily complicate the overall network setup. Moreover, it is preferable that the pairwise entanglement of photons is in the time-bin degree of freedom as the photonic time-bin qubit is ideally suited for fiber-optic distribution. Here, we report an experimental demonstration of a field-deployable quantum communication network involving multiple users, all of whom share pairwise entanglement in the time-bin degree of freedom of photons. In particular, by utilizing a single spontaneous-parametric down-conversion source which produces a broadband pair of photons and the wavelength-division demultiplexing/multiplexing technology, all the communicating parties within the network are always simultaneously ready for quantum communication. To further demonstrate the practical feasibility of a quantum network with time-bin entanglement over a wavelength-multiplexed fiber network, we demonstrate entangled-photon quantum key distribution with three users, each separated by 60 km of optical fibers.
Quantum information protocols are being deployed in increasingly practical scenarios, via optical fibers or free space, alongside classical communications channels. However, entanglement, the most critical resource to deploy to the communicating parties, is also the most fragile to the noise-induced degradations. Here we show that polarization-frequency hyperentanglement of photons can be effectively employed to enable noise-resistant distribution of polarization entanglement through noisy quantum channels. In particular, we demonstrate that our hyperentanglement-based scheme results in an orders-of-magnitude increase in the SNR for distribution of polarization-entangled qubit pairs, enabling quantum communications even in the presence of strong noise that would otherwise preclude quantum operations due to noise-induced entanglement sudden death. While recent years have witnessed tremendous interest and progress in long-distance quantum communications, previous attempts to deal with the noise have mostly been focused on passive noise suppression in quantum channels. Here, via the use of hyperentangled degrees of freedom, we pave the way toward a universally adoptable strategy to enable entanglement-based quantum communications via strongly noisy quantum channels.
Entanglement is an essential ingredient in current experimental implementations for quantum communication. Nevertheless, distributing the entangled states to distant users, in high quality, via widely installed fiber channels has been a daunting problem. Here, we report an experimental distribution of high-quality entangled qubits over long-distance fiber channels, especially by using time-bin mode due to its outstanding robustness in fiber-optic distributions. In particular, by employing actively operating feedback schemes, we clearly demonstrate that the time-bin entanglement can be reliably shared between two distant parties, each separated by up to 60 km in all fiber-based implementations; then, we prove the significance of our study in long-range, long-lasting quantum communication by showing a high value of two-photon interference visibilities and a violation of the Clauser-Horne-Shimony-Holt Bell inequality.
Up-conversion single-photon detectors (UCSPD) are based on sum-frequency generation of the telecom band single-photons to near-infrared wavelengths at which efficient and low-noise silicon single-photon detectors are available. Moreover, because of high dynamic range of silicon single-photon detectors, UCSPD is suitable for high-speed quantum communication. UCSPDs reported to date, however, have a very narrow fixed window of detectable wavelengths, severely limiting their applications in wavelength-multiplexed quantum networks. In this work, we report a tunable UCSPD module that covers the complete telecom C band, making it suitable for quantum communication networks based on sharing wavelength-multiplexed entangled photons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.