Metabolomic isotopic tracing can provide flux information useful for understanding drug mechanisms. For that, NMR has the unique advantage of giving positional isotope enrichment information, but the current 13C 1D...
This study is focused on the involvement of the unusual nucleotide (p)ppGpp during the morphological and physiological differentiation of Streptomyces clavuligerus. In particular, the functional and structural elements of two genes encoding the proteins RelA and Rsh were identified. The relA gene encodes an 843 aa protein (RelA), while the rsh gene encodes a 738 aa protein (Rsh). The relA and rsh genes were disrupted by the insertion of a hygromycin resistance gene and an apramycin resistance gene, respectively. The synthesis of ppGpp in the relA gene-disrupted mutant was completely eliminated under conditions of starvation for amino acids, whereas synthesis persisted, but was greatly reduced in the rsh gene-disrupted mutant. The relA gene-disrupted mutant had a bald appearance on agar plate cultures and retarded growth in submerged culture, while the rsh-disrupted mutant was unchanged in growth characteristics relative to the wild-type culture. The production of both clavulanic acid and cephamycin C were completely abolished in the relA-disrupted mutant. Thus, it is concluded that the relA gene rather than rsh is essential for morphological and physiological differentiation in S. clavuligerus and that RelA primarily governs the stringent response of S. clavuligerus to starvation for amino acids.
Isotopomer analysis using either C NMR or LC/GC-MS has been an invaluable tool for studying metabolic activities in a variety of systems. Traditional challenges are, however, thatC-detected NMR is insensitive despite its high resolution, and that MS-based techniques cannot easily differentiate positional isotopomers. In addition, current C NMR or LC/GC-MS has limitations in detecting metabolites in living cells. Here, we describe a non-uniform sampling-based 2D heteronuclear single quantum coherence (NUS HSQC) approach to measure metabolic isotopomers in both cell lysates and living cells. The method provides a high resolution that can resolve multiplet structures in theC dimension while retaining the sensitivity of the H-indirect detection. The approach was tested in L1210 mouse leukemia cells labeled withC acetate by measuring NUS HSQC with 25% sampling density. The results gave a variety of metabolic information such as (1) higher usage of acetate in acetylation pathway than aspartate synthesis, (2) TCA cycle efficiency changes upon the inhibition of mitochondrial oxidative phosphorylation by pharmacological agents, and (3) position-dependent isotopomer patterns in fatty acids in living cells. In addition, we were able to detect fatty acids along with other hydrophilic molecules in one sample of live cells without extraction. Overall, the high sensitivity and resolution along with the application to live cells should make the NUS HSQC approach attractive in studying carbon flux information in metabolic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.