A novel fish reovirus, Hubei grass carp disease reovirus (HGDRV; formerly grass carp reovirus strain 104, GCRV104), was isolated from diseased grass carp in China in 2009 and the full genome sequence was determined. This reovirus was propagated in a grass carp kidney cell line with a typical cytopathic effect. The total size of the genome was 23 706 bp with a 51 mol% G+C content, and the 11 dsRNA segments encoded 12 proteins (two proteins encoded by segment 11). A nucleotide sequence similarity search using BLASTN found no significant matches except for segment 2, which partially matched that of the RNA-dependent RNA polymerase (RdRp) from several viruses in the genera Aquareovirus and Orthoreovirus of the family Reoviridae. At the amino acid level, seven segments (Seg-1 to Seg-6, and Seg-8) matched with species in the genera Aquareovirus (15-46 % identities) and Orthoreovirus (12-44 % identities), while for four segments (Seg-7, Seg-9, Seg-10 and Seg-11) no similarities in these genera were found. Conserved terminal sequences, 59-GAAUU--UCAUC-39, were found in each HGDRV segment at the 59 and 39 ends, and the 59-terminal nucleotides were different from any known species in the genus Aquareovirus. Phylogenetic analysis based on RdRp amino acid sequences from members of the family Reoviridae showed that HGDRV clustered with aquareoviruses prior to joining a branch common with orthoreoviruses. Based on these observations, we propose that HGDRV is a new species in the genus Aquareovirus that is distantly related to any known species within this genus.
BackgroundMiR-185-3p and miR-324-3p are 2 miRNAs that regulate nasopharyngeal carcinoma (NPC) radioresistance. This study tried to assess the clinical values of low miR-185-3p and low miR-324-3p expression in predicting response to radiotherapy (RT) and prognosis of NPC and to explore their new downstream targets.Material/MethodsWe recruited 80 patients with primary NPC. MiR-185-3p and miR-324-3p expression in the tumor tissues before and after RT or chemoradiotherapy (CRT) were determined. Overall survival and recurrence-free survival curves were estimated to assess the prognostic values of these 2 miRNAs. Their target was predicted using an online database and verified using dual luciferase assay, qRT-PCR, and Western blot analysis. In addition, the function of miR-185-3p/miR-324-3p-SMAD7 axis in NPC cells was investigated.ResultsThe expression of miR-185-3p and miR-324-3p was significantly reduced after RT in radioresistant but not in radiosensitive cases. Although miR-185-3p and miR-324-3p are not independent prognostic indicators of overall survival of NPC, their low expression is still associated with poor overall survival and recurrence-free survival. In addition, miR-185-3p and miR-324-3p can modulate growth and apoptosis of NPC cells, partly via SMAD7.ConclusionsCombined low miR-185-3p and miR-324-3p might be important markers for prediction of low response to RT/CRT and poor overall survival and recurrence-free survival. MiR-185-3p and miR-324-3p can modulate NPC cell growth and apoptosis, at least partly through targeting SMAD7.
Cancer cells that succeed in forming metastasis need to be reprogrammed to evade immune surveillance and survive in a new microenvironment. This is facilitated by metastatic niches that are either postformed through reciprocal signaling between tumor cells and local stromal cells or preformed as premetastatic niches before tumor cell arrival. IL6/STAT3 signaling is aberrantly activated in lung tumorigenesis and metastasis, however, the roles and mechanisms of action of IL6 remain controversial. Here, we showed that blockade of intrinsic STAT3 signaling in lung tumor cells suppressed lung metastasis in immune-competent syngeneic mice, but not in immune-deficient nude mice. Consistently, repression of STAT3 signaling in tumor cells made them susceptible to T-cell-mediated cytotoxicity. Thus, STAT3mediated immunosuppression is crucial for metastasis. Noticeably, lung metastasis was greatly increased in Gprc5a-knockout (ko; 5a À/À ) mice compared with wild-type mice, which correlated with upre-gulated IL6 in the tumor microenvironment. Depletion of IL6 via combined deletion of Il6 and Gprc5a genes almost completely eliminated lung metastasis in Gprc5a-ko/Il6-ko (5a À/À ;Il6 À/À ) mice. Mechanistically, dysregulated IL6 reprogrammed the STAT3 pathway in metastatic tumor cells, and induced recruitment of myeloid-derived suppressor cells and polarized macrophages to evade host immunity. Consistently, IHC staining showed that activated STAT3 correlated with repressed infiltration of CD8 þ T cells in non-small cell lung cancer. Therefore, IL6/STAT3 signaling is crucial for orchestrating premetastatic niche formation and immunosuppression in lung.Significance: IL6 plays important roles not only in cell autonomous propensity for metastasis, but also in establishing the metastatic niche.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.