We propose a highly efficient and faster Single Image Super-Resolution (SISR) model with Deep Convolutional neural networks (Deep CNN). Deep CNN have recently shown that they have a significant reconstruction performance on single-image super-resolution. The current trend is using deeper CNN layers to improve performance. However, deep models demand larger computation resources and are not suitable for network edge devices like mobile, tablet and IoT devices. Our model achieves state-of-the-art reconstruction performance with at least 10 times lower calculation cost by Deep CNN with Residual Net, Skip Connection and Network in Network (DCSCN). A combination of Deep CNNs and Skip connection layers are used as a feature extractor for image features on both local and global areas. Parallelized 1x1 CNNs, like the one called Network in Network, are also used for image reconstruction.That structure reduces the dimensions of the previous layer's output for faster computation with less information loss, and make it possible to process original images directly. Also we optimize the number of layers and filters of each CNN to significantly reduce the calculation cost. Thus, the proposed algorithm not only achieves stateof-the-art performance but also achieves faster and more efficient computation. Code is available at https://github.com/jiny2001/dcscn-super-resolution.
Heart rate (HR) is a crucial physiological signal that can be used to monitor health and fitness. Traditional methods for measuring HR require wearable devices, which can be inconvenient or uncomfortable, especially during sleep and meditation. Noncontact HR detection methods employing microwave radar can be a promising alternative. However, the existing approaches in the literature usually use high-gain antennas and require the sensor to face the user’s chest or back, making them difficult to integrate into a portable device and unsuitable for sleep and meditation tracking applications. This study presents a novel approach for noncontact HR detection using a miniaturized Soli radar chip embedded in a portable device (Google Nest Hub). The chip has a 6.5 mm × 5 mm × 0.9 mm dimension and can be easily integrated into various devices. The proposed approach utilizes advanced signal processing and machine learning techniques to extract HRs from radar signals. The approach is validated on a sleep dataset (62 users, 498 hours) and a meditation dataset (114 users, 1131 minutes). The approach achieves a mean absolute error (MAE) of 1.69 bpm and a mean absolute percentage error (MAPE) of 2.67% on the sleep dataset. On the meditation dataset, the approach achieves an MAE of 1.05 bpm and a MAPE of 1.56%. The recall rates for the two datasets are 88.53% and 98.16%, respectively. This study represents the first application of the noncontact HR detection technology to sleep and meditation tracking, offering a promising alternative to wearable devices for HR monitoring during sleep and meditation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.