Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.
Background:Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation.Objectives:We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as marker, and epigenome-wide cord blood DNA methylation.Methods:We meta-analyzed the associations between NO2 exposure at residential addresses during pregnancy and cord blood DNA methylation (Illumina 450K) in four European and North American studies (n = 1,508) with subsequent look-up analyses in children ages 4 (n = 733) and 8 (n = 786) years. Additionally, we applied a literature-based candidate approach for antioxidant and anti-inflammatory genes. To assess influence of exposure at the transcriptomics level, we related mRNA expression in blood cells to NO2 exposure in 4- (n = 111) and 16-year-olds (n = 239).Results:We found epigenome-wide significant associations [false discovery rate (FDR) p < 0.05] between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochondria-related genes: cg12283362 (LONP1), cg24172570 (3.8 kbp upstream of HIBADH), and cg08973675 (SLC25A28). The associations with cg08973675 methylation were also significant in the older children. Further analysis of antioxidant and anti-inflammatory genes revealed differentially methylated CpGs in CAT and TPO in newborns (FDR p < 0.05). NO2 exposure at the time of biosampling in childhood had a significant impact on CAT and TPO expression.Conclusions:NO2 exposure during pregnancy was associated with differential offspring DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential methylation as well as expression of genes involved in antioxidant defense pathways.Citation:Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104–110; http://dx.doi.org/10.1289/EHP36
Sleep durations of 7-8 h/d, 9-10 h/d, and 10 h/d or longer, as well as longer daytime napping times, tend to present higher risks of having osteoporosis, and this tendency is most obvious in postmenopausal women reporting good-quality sleep.
Cardiac fibrosis has been known to play an important role in the etiology of heart failure after myocardial infarction (MI). B lymphoma Mo-MLV insertion region 1 homolog (BMI1), a transcriptional repressor, is important for fibrogenesis in the kidneys. However, the effect of BMI1 on ischemia-induced cardiac fibrosis remains unclear. BMI1 was strongly expressed in the infarct region 1 wk post-MI in mice and was detected by Western blot and histological analyses. Lentivirus-mediated overexpression of BMI1 significantly promoted cardiac fibrosis, worsened cardiac function 4 wk after the intervention in vivo, and enhanced the proliferation and migration capabilities of fibroblasts in vitro , whereas downregulation of BMI1 decreased cardiac fibrosis and prevented cardiac dysfunction in mice 4 wk post-MI in vivo. Furthermore, upregulated BMI1 inhibited phosphatase and tensin homolog (PTEN) expression, enhanced phosphatidylinositol 3-kinase (PI3K) expression, and increased the phosphorylation level of Akt and mammalian target of rapamycin (mTOR) in mice 4 wk after lentiviral infection, which was in accordance with the changes seen in their infarcted myocardial tissues. At the same time, the effects of BMI1 on cardiac fibroblasts were reversed in vitro when these cells were exposed to NVP-BEZ235, a dual-kinase (PI3K/mTOR) inhibitor. In conclusion, BMI1 is associated with cardiac fibrosis and dysfunction after MI by regulating cardiac fibroblast proliferation and migration, and these effects could be partially explained by the regulation of the PTEN-PI3K/Akt-mTOR pathway. NEW & NOTEWORTHY Ischemia-induced B lymphoma Mo-MLV insertion region 1 homolog (BMI1) significantly promoted cardiac fibrosis and worsened cardiac function in vivo, whereas downregulation of BMI1 decreased cardiac fibrosis and prevented cardiac dysfunction in myocardial infarcted mice. BMI1 also enhanced proliferation and migration capabilities of fibroblasts in vitro; these effects were reversed by NVP-BEZ235. Effects of BMI1 on cardiac fibrosis could be partially explained by regulation of the phosphatase and tensin homolog-phosphatidylinositol 3-kinase/Akt-mammalian target of rapamycin pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.