This study investigated the antioxidant activity of one hundred kinds of pure chemical compounds found within a number of natural substances and oriental medicinal herbs (OMH). Three different methods were used to evaluate the antioxidant activity of DPPH radical-scavenging activity, ABTS radical-scavenging activity, and online screening HPLC-ABTS assays. The results indicated that 17 compounds exhibited better inhibitory activity against ABTS radical than DPPH radical. The IC50 rate of a more practical substance is determined, and the ABTS assay IC50 values of gallic acid hydrate, (+)-catechin hydrate, caffeic acid, rutin hydrate, hyperoside, quercetin, and kaempferol compounds were 1.03 ± 0.25, 3.12 ± 0.51, 1.59 ± 0.06, 4.68 ± 1.24, 3.54 ± 0.39, 1.89 ± 0.33, and 3.70 ± 0.15 μg/mL, respectively. The ABTS assay is more sensitive to identifying the antioxidant activity since it has faster reaction kinetics and a heightened response to antioxidants. In addition, there was a very small margin of error between the results of the offline-ABTS assay and those of the online screening HPLC-ABTS assay. We also evaluated the effects of 17 compounds on the NO secretion in LPS-stimulated RAW 264.7 cells and also investigated the cytotoxicity of 17 compounds using a cell counting kit (CCK) in order to determine the optimal concentration that would provide an effective anti-inflammatory action with minimum toxicity. These results will be compiled into a database, and this method can be a powerful preselection tool for compounds intended to be studied for their potential bioactivity and antioxidant activity related to their radical-scavenging capacity.
Eperisone hydrochloride (EH) is widely used as a muscle relaxant for patients with muscular contracture, low back pain, or spasticity. Human serum albumin (HSA) is a highly soluble negatively charged, endogenous and abundant plasma protein ascribed with the ligand binding and transport properties. The current study was undertaken to explore the interaction between EH and the serum transport protein, HSA. Study of the interaction between HSA and EH was carried by UV-vis, fluorescence quenching, circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, Förster's resonance energy transfer, isothermal titration calorimetry and differential scanning calorimetry. Tryptophan fluorescence intensity of HSA was strongly quenched by EH. The binding constants (K) were obtained by fluorescence quenching, and results show that the HSA-EH interaction revealed a static mode of quenching with binding constant K ≈ 10 reflecting high affinity of EH for HSA. The negative ΔG° value for binding indicated that HSA-EH interaction was a spontaneous process. Thermodynamic analysis shows HSA-EH complex formation occurs primarily due to hydrophobic interactions, and hydrogen bonds were facilitated at the binding of EH. EH binding induces α-helix of HSA as obtained by far-UV CD and FTIR spectroscopy. In addition, the distance between EH (acceptor) and Trp residue of HSA (donor) was calculated 2.18 nm using Förster's resonance energy transfer theory. Furthermore, molecular docking results revealed EH binds with HSA, and binding site was positioned in Sudlow Site I of HSA (subdomain IIA). This work provides a useful experimental strategy for studying the interaction of myorelaxant with HSA, helping to understand the activity and mechanism of drug binding.
BackgroundOxidative stress is involved in neuronal cell death and mitochondrial dysfunction in neurodegenerative diseases. Liriope platyphylla (LP) has been suggested to have anti-inflammation, anti-bacterial, and anti-cancer effects. However, whether LP exerts neuroprotective effects on neuronal cells is unknown.MethodsThe present study was performed to investigate the neuroprotective effects of LP extract (LPE) against hydrogen peroxide (H2O2)-induced injury in human neuroblastoma cells SH-SY5Y. To test neuroprotective effects of LPE, we performed cell viability assay, flow cytometry analysis and western blot analysis. In addition, mitochondrial membrane potential (MMP) and oxidative stress were performed to evaluate the anti-apoptotic and anti-oxidant effects.ResultsLPE pretreatment conferred significant protection against the H2O2-induced decrease of SH-SY5Y cell viability. H2O2-induced increases of intracellular oxidative stress and mitochondrial dysfunction were attenuated by LPE pretreatment. Therefore, LPE pretreatment prevented SH-SY5Y cell injury. Treatment with H2O2 significantly induced poly(ADP ribose) polymerase (PARP) and caspase-3 cleavage, which was blocked by LPE. We found that p38 activation was involved in the neuroprotective effects of LPE.ConclusionsCurrent findings suggest that LPE exerts neuroprotective effects against H2O2-induced apoptotic cell death by modulating p38 activation in SH-SY5Y cells. Therefore, LPE has potential anti-apoptotic effects that may be neuroprotective in neurodegenerative diseases and aging-related dementia.
Methylglyoxal (MG) is a reactive dicarbonyl intermediate and a precursor of advanced glycation end products (AGEs). The authors investigated the role played by AGEs in muscle myopathy and the amelioration of its effects by curcumin and gingerol. In addition to producing phenotypical changes, MG increased oxidative stress and reduced myotube formation in C2C12 cells. RAGE (receptor for AGEs) expression was up-regulated and MYOD and myogenin (MYOG) expressions were concomitantly down-regulated in MG-treated cells. Interestingly, AGE levels were higher in plasma (~32 fold) and muscle (~26 fold) of diabetic mice than in control mice. RAGE knock-down (RAGEkd) reduced the expressions of MYOD and MYOG and myotube formation in C2C12 cells. In silico studies of interactions between curcumin or gingerol and myostatin (MSTN; an inhibitor of myogenesis) and their observed affinities for activin receptor type IIB (ACVRIIB) suggested curcumin and gingerol reduce the interaction between MSTN and ACVRIIB. The findings of this study suggest enhanced AGE production and subsequent RAGE-AGE interaction obstruct the muscle development program, and that curcumin and gingerol attenuate the effect of AGEs on myoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.