I.v. BU has been proven to have better bioavailability, reliable systemic drug exposure with more predictable blood levels and lower toxicity than oral BU when used as part of conditioning regimens before hematopoietic SCT (HSCT). Some studies have shown that once-daily i.v. BU had the same clinical efficacy as i.v. BU administered four times daily. To observe the clinical efficacy and pharmacokinetics (PK) of once-daily i.v. BU and to evaluate the influence of glutathione S-transferase (GST) gene polymorphisms on once-daily i.v. BU PK in adult Chinese patients with allogeneic HSCT, we analyzed 25 patients receiving related or unrelated donor transplant conditioned with i.v. BU-based regimens. With a median follow-up of 32.7 months, the 2-year OS and EFS were 64 and 63.8% for all the patients, respectively, and the 2-year cumulative incidence of relapse for all patients was 18.3%. On the basis of HPLC analysis, the mean clearance and mean daily area under the curve (AUC) of i.v. BU were calculated as 4.02 mL/min per kg and 3380.77 μM/min, respectively. The estimated C max was 1.031 ± 0.0325 μg/mL. The estimated t 1/2 and V d values were 3.618 ± 0.1932 h and 1.212 ± 0.0352 L/kg. The once-daily i.v. BU-based conditioning regimen was very well tolerated with minor toxicity in patients, most likely because of dose assurance with predictable PK. There was no GSTA1 *B/*B homozygous patient in our Chinese patients. A significant association between BU metabolism and GSTA1 polymorphism was observed. The GSTA1 *A/*B genotype group showed a significantly higher AUC (P o0.0001), higher C max (P = 0.0003) and lower clearance (P = 0.0007) than the GSTA1
Myeloid‐derived suppressor cells (MDSCs) are a heterogeneous cell population that includes immature myeloid cells and the progenitor cells of macrophages, dendritic cells (DCs), monocytes, and neutrophils. The expansion and functional importance of MDSCs in patients with cancer and noncancer pathogenic conditions has been recognized. As a result, there has been growing interest in understanding their roles in acute graft‐versus‐host disease (aGVHD) after allogenetic hematopoietic stem cell transplantation (allo‐HSCT). In order to evaluate possible effects of MDSCs on aGVHD development and clinical outcomes, this study systematically detected the dynamic changes of MDSCs accumulation in patients during the first 100 days after allo‐HSCT, and investigated the levels of other cell types and relative cytokines during MDSCs accumulation. Results showed that accumulation of MDSCs in the graft and in peripheral blood when engraftment might contribute to patients' overall immune suppression and result in the successful control of severe aGVHD and long‐term survival without influence on risk of recurrence after allo‐HSCT. But MDSCs levels in the graft had more favorable predictive abilities. Furthermore, MDSCs proportion significantly increased in patients developing aGVHD after allo‐HSCT. It might be caused by secondary inflammatory response, especially related to high concentrations of IL‐6 and TNF‐α. But this accumulation would not be able to counterbalance the aggravation of aGVHD and would not have influence on clinical outcomes and risk of relapse. Overall, MDSCs might be considered as potential new therapeutic option for aGVHD and achieve long‐term immunological tolerance and survival.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.