The performance and reliability of large-area graphene grown by chemical vapor deposition are often limited by the presence of wrinkles and the transfer-process-induced polymer residue. Here, we report a transfer approach using paraffin as a support layer, whose thermal properties, low chemical reactivity and non-covalent affinity to graphene enable transfer of wrinkle-reduced and clean large-area graphene. The paraffin-transferred graphene has smooth morphology and high electrical reliability with uniform sheet resistance with ~1% deviation over a centimeter-scale area. Electronic devices fabricated on such smooth graphene exhibit electrical performance approaching that of intrinsic graphene with small Dirac points and high carrier mobility (hole mobility = 14,215 cm2 V−1 s−1; electron mobility = 7438 cm2 V−1 s−1), without the need of further annealing treatment. The paraffin-enabled transfer process could open realms for the development of high-performance ubiquitous electronics based on large-area two-dimensional materials.
A facile way to synthesize nanometer-sized polymer (polypyrrole, PPy) particles is explored on the basis of the formation of complexes between water-soluble polymers and metal cations in aqueous solution. The metal cation is used as an oxidizing agent to initiate the chemical oxidation polymerization of the corresponding monomer, and the water-soluble polymer effectively provides a steric stability for the growth of polymer nanoparticles during the polymerization process. Light-scattering analyses are performed to give insight into the behavior of the complexes in aqueous solution. In addition, major physical parameters affecting the formation of polymer nanoparticles are investigated, including hydrodynamic radius, radius of gyration, shape factor, and viscosity. By judicious control of these parameters, PPy nanoparticles with narrow size distribution can be readily fabricated in large quantities. It is also possible to control the diameter of the nanoparticles by changing critical synthetic variables. Importantly, PPy nanoparticles of approximately 20-60 nm in diameter can be prepared without using any surfactants or specific templates; this novel strategy offers great possibility for mass production of polymer nanoparticles.
Patterned graphene sheets are fabricated by an inkjet printing technique. High line resolution and sustained electrical conductivity is achieved, and tuning of the sheet resistance is dependent on the concentration of graphene oxide ink and the number of print layers. A patterned graphene‐based thin film is also applied as a practical wideband dipole antenna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.