Second-order rate constants have been measured for the reaction of 2,4-dinitrophenyl X-substituted benzenesulfonates with a series of primary amines. The nucleophilic substitution reaction proceeds through competitive S-O and C-O bond fission pathways. The S-O bond fission occurs dominantly for reactions with highly basic amines or with substrates having a strong electron-withdrawing group in the sulfonyl moiety. On the other hand, the C-O bond fission occurs considerably for the reactions with low basic amines or with substrates having a strong electron-donating group in the sulfonyl moiety, emphasizing that the regioselectivity is governed by both the amine basicity and the electronic effect of the sulfonyl substituent X. The apparent second-order rate constants for the S-O bond fission have resulted in a nonlinear Brønsted-type plot for the reaction of 2,4-dinitrophenyl benzenesulfonate with 10 different primary amines, suggesting that a change in the rate-determining step occurs upon changing the amine basicity. The microscopic rate constants (k(1) and k(2)/k(-)(1) ratio) associated with the S-O bond fission pathway support the proposed mechanism. The second-order rate constants for the S-O bond fission result in good linear Yukawa-Tsuno plots for the aminolyses of 2,4-dinitrophenyl X-substituted benzenesulfonates. However, the second-order rate constants for the C-O bond fission show no correlation with the electronic nature of the sulfonyl substituent X, indicating that the C-O bond fission proceeds through an S(N)Ar mechanism in which the leaving group departure occurs rapidly after the rate-determining step.
[reaction: see text] We report on a kinetic study for the nucleophilic substitution reactions of 2,4-dinitrophenyl X-substituted benzensulfonates (X = 4-MeO, 1a, and X = 4-NO(2), 1c) with a series of primary amines in 80 mol % H(2)O/20 mol % DMSO at 25.0 degrees C. The reactions proceed through S-O and C-O bond fission pathways competitively. The fraction of the S-O bond fission increases as the attaching amine becomes more basic and the substituent X changes from 4-MeO to 4-NO(2), indicating that the regioselectivity is governed by the electronic nature of the substituent X as well as the basicity of amines. The S-O bond fission has been suggested to proceed through an addition intermediate with a change in the rate-determining step (RDS) at pK(a) degrees = 8.9 +/- 0.1. The electronic nature of the substituent X influences k(N)(S-O) and k(1) values, but not the k(2)/k(-1) ratios and the pK(a) degrees value significantly. Stabilization of the ground state (GS) through resonance interaction between the electron-donating substituent and the electrophilic center has been suggested to be responsible for the decreased reactivity of 1a compared to 1c. The second-order rate constants for the C-O bond fission exhibit no correlation with the electronic nature of the substituent X. The distance effect and the nature of the reaction mechanism have been suggested to be responsible for the absence of the correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.