Background
Metabolic dysfunction has been suggested to be involved in the pathophysiology of amyotrophic lateral sclerosis (ALS). This study aimed to investigate the potential role of metabolic biomarkers in the progression of ALS and understand the possible metabolic mechanisms.
Methods
Fifty‐two patients with ALS and 24 normal controls were included, and blood samples were collected for analysis of metabolic biomarkers. Basal anthropometric measures, including body composition and clinical features, were measured in ALS patients. The disease progression rate was calculated using the revised ALS functional rating scale (ALSFRS‐R) during the 6‐month follow‐up.
Results
ALS patients had higher levels of adipokines (adiponectin, adipsin, resistin, and visfatin) and other metabolic biomarkers [C‐peptide, glucagon, glucagon‐like peptide 1 (GLP‐1), gastric inhibitory peptide, and plasminogen activator inhibitor type 1] than controls. Leptin levels in serum were positively correlated with body mass index, body fat, and visceral fat index (VFI). Adiponectin was positively correlated with the VFI and showed a positive correlation with the ALSFRS‐R and a negative correlation with baseline disease progression. Patients with lower body fat, VFI, and fat in limbs showed faster disease progression during follow‐ups. Lower leptin and adiponectin levels were correlated with faster disease progression. After adjusting for confounders, lower adiponectin levels and higher visfatin levels were independently correlated with faster disease progression.
Interpretation
The current study found altered levels of metabolic biomarkers in ALS patients, which may play a role in ALS pathogenesis. Adiponectin and visfatin represent potential biomarkers for prediction of disease progression in ALS.
This study aims to observe the nutritional status of Chinese patients with amyotrophic lateral sclerosis (ALS), further investigating its effect on disease progression. One hundred consecutive newly diagnosed ALS patients and fifty controls were included. Weight and body composition were measured by bioelectrical impedance analysis at baseline and follow-ups. The revised ALS functional rating scale (ALSFRS-R) was used to calculate the rate of disease progression. Patients with ALS had a significantly lower BMI than controls, while no significant difference was found in body composition. Weight loss occurred in 66 (66%) and 52 (67.5%) patients at diagnosis and follow-up, respectively. Patients with significant weight loss (≥ 5%) at diagnosis had significantly lower BMI, fat mass (FM), and FM in limbs and trunk than those without. Fat-free mass (FFM), FM, and FM in limbs were significantly decreased along with weight loss at follow-up (p < 0.01). Patients with lower visceral fat index, lower proportion of FM, and higher proportion of muscle mass at baseline progressed rapidly during follow-ups (p < 0.05). Multivariate linear regression showed that FFM and weight at follow-up were independently correlated with disease progression rate at follow-up (p < 0.05). Weight loss is a common feature in ALS patients, along with muscle and fat wasting during the disease course. Body composition may serve as a prognostic factor and provide guidance for nutritional management in ALS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.