This paper presents a novel model predictive current control (MPCC) with an optimum duty-cycle calculation scheme for asymmetrical six-phase permanent magnet synchronous machine (ASPMSM) drives. The proposed method takes advantages of the steady-state performance improvement and the weighting factor elimination. Both merits are owing to the optimum duty-cycle calculation scheme. On the one hand, for the α-β subspace, the optimal voltage vector set (VVS) is chosen from twelve ones and the corresponding optimal duty cycles are calculated using the proposed scheme. On the other hand, for the x-y subspace, the VVS can be determined according to that of α-β subspace and the optimal duty cycles are deduced using the same scheme. The voltage vector references in two subspaces are then obtained, and they are transformed to six-phase voltages for controlling the six-phase inverter. The proposed method is verified by experimental results based on a 2 kW ASPMSM prototype.INDEX TERMS Model predictive current control (MPCC), asymmetrical six-phase permanent magnet synchronous machine (ASPMSM), steady-state performance, weighting factor, duty-cycle calculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.