SUMMARY
Induced pluripotent stem cells (iPSCs) outwardly appear to be indistinguishable from embryonic stem cells (ESCs). A study of gene expression profiles of mouse and human ESCs and iPSCs suggests that, while iPSCs are quite similar to their embryonic counterparts, a recurrent gene expression signature appears in iPSCs regardless of their origin or the method by which they were generated. Upon extended culture, hiPSCs adopt a gene expression profile more similar to hESCs; however, they still retain a gene expression signature unique from hESCs that extends to miRNA expression. Genome-wide data suggested that the iPSC signature gene expression differences are due to differential promoter binding by the reprogramming factors. High-resolution array profiling demonstrated that there is no common specific subkaryotypic alteration that is required for reprogramming and that reprogramming does not lead to genomic instability. Together, these data suggest that iPSCs should be considered a unique subtype of pluripotent cell.
SUMMARY
To characterize patient-derived xenografts (PDXs) for functional studies,
we made whole-genome comparisons with originating breast cancers representative
of the major intrinsic subtypes. Structural and copy number aberrations were
found to be retained with high fidelity. However, at the single-nucleotide
level, variable numbers of PDX-specific somatic events were documented, although
they were only rarely functionally significant. Variant allele frequencies were
often preserved in the PDXs, demonstrating that clonal representation can be
transplantable. Estrogen-receptor-positive PDXs were associated with
ESR1 ligand-binding-domain mutations, gene amplification,
or an ESR1/YAP1 translocation. These events produced different
endocrine-therapy-response phenotypes in human, cell line, and PDX
endocrine-response studies. Hence, deeply sequenced PDX models are an important
resource for the search for genome-forward treatment options and capture
endocrine-drug-resistance etiologies that are not observed in standard cell
lines. The originating tumor genome provides a benchmark for assessing genetic
drift and clonal representation after transplantation.
SUMMARYRNA sequencing (RNA-seq) detects estrogen receptor alpha gene (ESR1) fusion transcripts in estrogen receptor-positive (ER+) breast cancer, but their role in disease pathogenesis remains unclear. We examined multiple ESR1 fusions and found that two, both identified in advanced endocrine treatment-resistant disease, encoded stable and functional fusion proteins. In both examples, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, ESR1 exons 1–6 were fused in frame to C-terminal sequences from the partner gene. Functional properties include estrogen-independent growth, constitutive expression of ER target genes, and anti-estrogen resistance. Both fusions activate a metastasis-associated transcriptional program, induce cellular motility, and promote the development of lung metastasis. ESR1-e6>YAP1- and ESR1-e6>PCDH11X-induced growth remained sensitive to a CDK4/6 inhibitor, and a patient-derived xenograft (PDX) naturally expressing the ESR1-e6>YAP1 fusion was also responsive. Transcriptionally active ESR1 fusions therefore trigger both endocrine therapy resistance and metastatic progression, explaining the association with fatal disease progression, although CDK4/6 inhibitor treatment is predicted to be effective.
Hypoxia-inducible factor 1 (HIF-1) emerges as a crucial player in tumor progression. However, its role in hepatocellular carcinoma (HCC), especially its relation with global DNA methylation patterns in HCC under hypoxic tumor microenvironment is not completely understood. Methionine adenosyltransferase 2A (MAT2A) maintains the homeostasis of S-adenosylmethionine (SAM), a critical marker of genomic methylation status. In this study, we investigated the link between HIF-1a and MAT2A as a mechanism responsible for the change in genomic DNA methylation patterns in liver cancer under hypoxia conditions. Our results showed that hypoxia induces genomic DNA demethylation in CpG islands by reducing the steady-state SAM level both in vitro and in vivo. In addition, HIF-1a and MAT2A expression is correlated with tumor size and TNM stage of liver cancer tissues. We further showed that hypoxia-induced MAT2A expression is HIF-1a dependent and requires the recruitment of p300 and HDAC1. We also identified an authentic consensus HIF1a binding site in MAT2A promoter by site-directed mutagenesis, electrophoretic mobility shift assay, and chromatin immunoprecipitation assay. Taken together, we show for the first time that hypoxia induces genomic DNA demethylation through the activation of HIF-1a and transcriptional upregulation of MAT2A in hepatoma cells. These findings provide new insights into our understanding of the molecular link between genomic DNA methylation and tumor hypoxia in HCC. Mol Cancer Ther; 10(6); 1113-23. Ó2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.