Summary Extensive research has been conducted on the development of three groups of naturally occurring antimicrobials as novel alternatives to antibiotics: bacteriophages (phages), bacterial cell wall hydrolases (BCWH), and antimicrobial peptides (AMP). Phage therapies are highly efficient, highly specific, and relatively cost‐effective. However, precautions have to be taken in the selection of phage candidates for therapeutic applications as some phages may encode toxins and others may, when integrated into host bacterial genome and converted to prophages in a lysogenic cycle, lead to bacterial immunity and altered virulence. BCWH are divided into three groups: lysozymes, autolysins, and virolysins. Among them, virolysins are the most promising candidates as they are highly specific and have the capability to rapidly lyse antibiotic‐resistant bacteria on a generally species‐specific basis. Finally, AMP are a family of natural proteins produced by eukaryotic and prokaryotic organisms or encoded by phages. AMP are of vast diversity in term of size, structure, mode of action, and specificity and have a high potential for clinical therapeutic applications.
Impaired phosphorylation of ACE2 Ser680 by AMPK in pulmonary endothelium leads to a labile ACE2 and hence is associated with the pathogenesis of PH. Thus, AMPK regulation of the vasoprotective ACE2 is a potential target for PH treatment.
Background: It has been speculated that the patellar J sign may have a negative effect on the clinical outcomes of patients with recurrent patellar dislocation (RPD). Purpose: To (1) evaluate clinical outcomes, postoperative patellar stability, and patellar maltracking correction in patients with RPD treated with derotational distal femoral osteotomy (DDFO) and combined procedures and (2) investigate the influence of J sign severity on the clinical outcomes. Study Design: Cohort study; Level of evidence, 3. Methods: Between January 2015 and December 2016, a total of 78 patients (81 knees) with RPD, a positive J sign, and an excessive femoral anteversion angle (FAA; ≥30°) were surgically treated with DDFO and combined procedures. J sign severity was graded according to a previously described classification system (grades 1-3). Routine radiography and computed tomography were performed on every patient to evaluate the patellar height, trochlear dysplasia, genu valgum, tibial tuberosity–trochlear groove distance, patellar lateral tilt angle, and patella–trochlear groove distance. The patellar lateral shift distance during stress radiography was measured preoperatively and postoperatively to quantify medial patellofemoral ligament (MPFL) graft laxity under anesthesia, and “MPFL residual graft laxity” was defined as the patellar ridge surpassing the apex of the lateral femoral trochlea. Patients were evaluated using the Kujala, International Knee Documentation Committee (IKDC), and Lysholm scores preoperatively and postoperatively. Patients were allocated into 3 subgroups in terms of the severity of the J sign: low-grade group 1 (grade 1; n = 19), low-grade group 2 (grade 2; n = 16), and high-grade group (grade 3; n = 12). Subgroup analyses were performed to investigate the influence of a high-grade J sign on the clinical outcomes. Results: Among the 78 patients (81 knees), 47 patients (47 knees) met the inclusion criteria. The mean follow-up time was 26.1 ± 1.7 months. The mean preoperative and postoperative FAAs were 36.2°± 5.3° and 10.0°± 2.1°, respectively, with a mean correction angle of 26.2°± 5.9°. At the final follow-up, all patient-reported outcomes improved significantly, and subgroup analyses showed that the high-grade group had significantly lower Kujala scores (75.6 vs 85.3 for low-grade group 1 [ P < .001] and 83.4 for low-grade group 2 [ P = .001]), Lysholm scores (77.6 vs 84.6 for low-grade group 1 [ P = .003]), and IKDC scores (78.6 vs 87.3 for low-grade group 1 [ P = .001] and 84.3 for low-grade group 2 [ P = .033]) than the low-grade groups. The total rate of MPFL residual graft laxity was 8.5% (4/47), and the prevalence of the postoperative residual J sign was 38.3% (18/47). Subgroup analyses showed significant differences between the high-grade group and the 2 low-grade groups with regard to the MPFL residual graft laxity rate (33.3% vs 0.0% for low-grade group 1 [ P = .016] and 0.0% for low-grade group 2 [ P = .024]), residual J sign rate (91.7% vs 15.8% for low-grade group 1 [ P < .001] and 25.0% for low-grade group 2 [ P < .001]), and patellar lateral shift distance (14.2 vs 8.1 mm for low-grade group 1 [ P = .002] and 8.7 mm for low-grade group 2 [ P = .007]). Conclusion: In a group of patients treated for RPD with a positive preoperative J sign and increased FAA (≥30°), patients with a preoperative high-grade J sign had inferior clinical outcomes, more MPFL residual graft laxity, and greater residual patellar maltracking.
Anodic growth of TiO(2) nanotubes has attracted intensive interests recently. However, the as-prepared TiO(2) nanotubes are usually amorphous and they generally need to be crystallized by sintering above 450 °C. Here, we report on a facile method to crystallize amorphous anodized TiO(2) nanotubes at a low temperature. We find that, simply by immersing them into hot water, the anodized TiO(2) nanotubes can be transformed from amorphous to crystalline state at a temperature as low as 92 °C. Results indicate that the hot water treatment might be a versatile strategy to crystallize amorphous anodized TiO(2) nanotubes at low temperature. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, UV-vis spectroscopy, and Brunauer-Emmett-Teller (BET) analysis via N(2) adsorption are used to characterize the resulting samples. In addition, the TiO(2) nanotubes in powder form are taken as photocatalysts to explore their potential applications. Results indicate that the sample after 35 h of hot water treatment shows the highest photoactivity, which is as efficient as the commercial photocatalyst Degussa P25. The photocatalytic testing results demonstrate that the hot water treatment reported in this study can be an alternative approach to the conventional methods.
This article reviews the development of a noninvasive diagnostic for diabetes by detecting ocular glucose. Early diagnosis and daily management are very important to diabetes patients to ensure a healthy life. Commercial blood glucose sensors have been used since the 1970s. Millions of diabetes patients have to prick their finger for a drop of blood 4-5 times a day to check blood glucose levels-almost 1800 times annually. There is a strong need to have a noninvasive device to help patients to manage the disease easily and painlessly. Instead of detecting the glucose in blood, monitoring the glucose level in other body fluids may provide a feasible approach for noninvasive diagnosis and diabetes control. Tear glucose has been studied for several decades. This article reviews studies on ocular glucose and its monitoring methods. Attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors are discussed as well as our current development of a nanostructured lens-based sensor for diabetes. This disposable biosensor for the detection of tear glucose may provide an alternative method to help patients manage the disease conveniently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.