Gomisin C (GC) and gomisin G (GG) are two lignan analogs isolated from the Traditional Chinese Medicine Schisandra chinensis which possesses multiple pharmacological activities. However, the potential herb-drug interactions (HDI) between these lignans and other drugs through inhibiting human cytochrome P450 3A4 (CYP3A4) and CYP3A5 remains unclear. In the present study, the inhibitory action of GC and GG on CYP3A4 and CYP3A5 were investigated. The results demonstrated that both GC and GG strongly inhibited CYP3A-mediated midazolam 1'-hydroxylation, nifedipine oxidation and testosterone 6β-hydroxylation. Notably, the inhibitory intensity of GC towards CYP3A4 was stronger than CYP3A5 when using midazolam and nifedipine as substrates. While inhibition of GC towards CYP3A5 was weaker than CYP3A4 when using testosterone as substrate. In contrast, GG showed a stronger inhibitory activity on CYP3A5 than CYP3A4 without substrate-dependent behavior. In addition, docking simulations indicated that the π-π interaction between CYP3A4 and GC, and hydrogen-bond interaction between CYP3A5 and GG might result in their different inhibitory actions. Furthermore, the AUC of drugs metabolized by CYP3A was estimated to increase by 8%-321% and 2%-3190% in the presence of GC and GG, respectively. These findings strongly suggested that GC and GG showed high HDI potentials, and the position of methylenedioxy group determined their different inhibitory effect towards CYP3A4 and CYP3A5, which are of significance for the application of Schisandra chinensis-containing herbs.
The mechanism of shengmai injection- (SMI-) related drug-drug interaction remains unclear. Evaluation of the inhibition potential of SMI's ingredients towards UDP-glucuronosyltransferases (UGTs) activity will provide a new insight to understand SMI-related drug-drug interaction. In vitro incubation system to model UGT reaction was used. Recombinant UGT isoforms-catalyzed 4-methylumbelliferone (4-MU) glucuronidation and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation reactions were employed to phenotype the inhibition profile of maidong's components towards the activity of UGT isoforms. Different inhibition potential of maidong's components towards various UGT isoforms was observed. Based on the inhibition kinetic investigation results, ophiopogonin D (OD) noncompetitively inhibited UGT1A6 and competitively inhibited UGT1A8, ophiopogonin D′ (OD′) noncompetitively inhibited UGT1A6 and UGT1A10, and ruscorectal (RU) exhibited competitive inhibition towards UGT1A4. The inhibition kinetic parameters were calculated to be 20.6, 40.1, 5.3, 9.0, and 0.02 μM, respectively. In combination with our previous results obtained for the inhibition of UGT isoforms by ginsenosides and wuweizi components, the important SMI ingredients exhibiting strong inhibition towards UGT isoforms were highlighted. All the results obtained in the present study provide a new insight to understand SMI-related drug-drug interaction.
Multidrug resistance (MDR) mediated by P-glycoprotein is one of the best characterized transporter-mediated barriers to successful cancer chemotherapy. In an attempt to find MDR-reversing agents, a series of novel acridine derivatives were synthesized and evaluated for their in vitro antiproliferative activities against K562 and K562/ADM cells. Some of these compounds showed superior MDR-reversing activities than Amsacrine, the reference compound. Structure-activity relationships (SAR) of these compounds indicated that the N, N-diethylamine moiety had an affect on the in vitro antiproliferative activity. Interestingly, the compounds bearing N, N-diethylamine moiety showed higher growth-inhibitory activity against K562/ADM cells than K562 cells. The high duplex DNA binding affinity and inhibition of topoisomerase of these acridine compounds are maintained which were confirmed by fluorescent quenching and DNA topoisomerase II cleavage assay, respectively. Moreover, several compounds were examined for their ability to increase the accumulation of rhodamine 123 in K562 and K562/ADM cells, and the result suggested that they may be inhibitors for P-glycoprotein. Our study suggested that acridine framework is a potentially interesting scaffold for developing novel MDR-reversing agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.