DsRNA-degrading enzymes (dsRNases) have been recognized as important factors in reducing RNA interference (RNAi) efficiency in different insect species. However, dsRNases in Plutella xylostella are still unknown. We identified the full-length cDNAs of PxdsRNase1, PxdsRNase2, PxdsRNase3, and PxdsRNase4. Gene expression profile showed that PxdsRNase1 was mainly expressed in the hemolymph; and that PxdsRNase2 and PxdsRNase3 were mainly expressed in the intestinal tract. The expression of PxCht (Chitinase of P. xylostella) in P. xylostella larvae injected with the mixture of dsPxCht (dsRNA of PxCht) and dsPxdsRNase1 (dsRNA of PxdsRNase1), dsPxdsRNase2 (dsRNA of PxdsRNase2), or dsPxdsRNase3 (dsRNA of PxdsRNase3) was significantly higher than that in the larvae injected with the mixture of dsGFP (dsRNA of green fluorescent protein gene, GFP) and dsPxCht; the transcription level of PxCht in the larvae feeding on the mixture of dsPxCht and dsPxdsRNase1, dsPxdsRNase2, or dsPxdsRNase3 was significantly higher than that in the larvae feeding on the mixture of dsPxCht and dsGFP. The recombinant protein of PxdsRNase1 degraded dsRNA rapidly, PxdsRNase3 cleaved dsRNA without complete degradation, and PxdsRNase2 could not degrade dsRNA in vitro. These results suggested that PxdsRNases1, PxdsRNases2, and PxdsRNases3 were involved in the dsRNA degradation to reduce RNAi efficiency with different mechanisms.
BACKGROUND: Opsins are crucial for animal vision. The identity and function of opsins in Plutella xylostella remain unknown. The aim of the research is to confirm which opsin gene(s) contribute to phototaxis of P. xylostella.RESULTS: LW-opsin, BL-opsin and UV-opsin, were identified in the P. xylostella genome. LW-opsin was more highly expressed than the other two opsin genes, and all three genes were specifically expressed in the head. Three P. xylostella strains, LW-13 with a 13-bp deletion in LW-opsin, BL + 2 with a 2-bp insertion in BL-opsin, and UV-29 with a 5-bp insertion and a 34-bp deletion in UV-opsin, were established from the strain G88 using the CRISPR/Cas9 system. Among the three opsin-knockout strains, only male and female LW-13 exhibited weaker phototaxis to lights of different wavelengths and white light than G88 at 2.5 lx due to defective locomotion, and LW-13 was defective to sense white, green and infrared lights. The locomotion of LW-13 was reduced compared with G88 at 2.5, 10, 20, 60, 80, 100, and 200 lx under the green light, but the locomotion of LW-13 female was recovered at 80, 100 and 200 lx. The defective phototaxis to the green light of male LW-13 was not affected by light intensity, while the defective phototaxis to the green light of female LW-13 was recovered at 10, 20, 60, 80, 100, and 200 lx. CONCLUSION: LW-opsin is involved in light sensing and locomotion of P. xylostella, providing a potential target gene for controlling the pest.
RNA interference (RNAi) has been developed and used as an emerging strategy for pest management. Here, an entomopathogen Bacillus thuringiensis (Bt) was used to express the dsRNA for the control of Plutella xylostella. A vector containing a 325-bp fragment of the conserved region of P. xylostella arginine kinase gene (PxAK) flanking in two ends with the promoter Pro3α was developed and transferred into Bt 8010 and BMB171, and consequently engineered Bt strains 8010AKi and BMB171AKi expressing dsRNA of PxAK were developed. The two engineered Bt strains were separately mixed with Bt 8010 in a series of ratios, and then fed to the P. xylostella larvae. We found that 8010:8010AKi of 9:1 and 8010:BMB171AKi of 7:3 caused a higher mortality than Bt 8010. PxAK expression levels in the individuals treated with the mixtures, 8010AKi and BMB171Aki, were lower than that in the control. The intrinsic rate of increase (r) and net reproductive rate (R0) of the population treated with 8010:8010AKi of 9:1 were lower than those of the population treated with Bt 8010 or 8010AKi. We developed a Bt-mediated insect RNAi for the control of P. xylostella and demonstrated a practical approach to integrating the entomopathogen with RNAi technique for the pest management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.