Activation of AKT signaling by PTEN loss or PIK3CA mutations occurs frequently in human cancers, but targeting AKT has been difficult due to the mechanism-based toxicities of inhibitors that target the inactive conformation of AKT. Ipatasertib (GDC-0068) is a novel selective ATP-competitive small-molecule inhibitor of AKT that preferentially targets active phosphorylated AKT (pAKT) and is potent in cell lines with evidence of AKT activation. In this phase I study, ipatasertib was well tolerated; most adverse events were gastrointestinal and grade 1–2 in severity. The exposures of ipatasertib ≥200 mg daily in patients correlated with preclinical TGI90, and pharmacodynamic studies confirmed that multiple targets (i.e., PRAS40, GSK3β, and mTOR) were inhibited in paired on-treatment biopsies. Preliminary antitumor activity was observed; 16 of 52 patients (30%), with diverse solid tumors and who progressed on prior therapies, had radiographic stable disease, and many of their tumors had activation of AKT.
The neural precursor cell expressed developmentally down-regulated gene 4–2, Nedd4-2, is an epilepsy-associated gene with at least three missense mutations identified in epileptic patients. Nedd4-2 encodes a ubiquitin E3 ligase that has high affinity toward binding and ubiquitinating membrane proteins. It is currently unknown how Nedd4-2 mediates neuronal circuit activity and how its dysfunction leads to seizures or epilepsies. In this study, we provide evidence to show that Nedd4-2 mediates neuronal activity and seizure susceptibility through ubiquitination of GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, (AMPAR). Using a mouse model, termed Nedd4-2andi, in which one of the major forms of Nedd4-2 in the brain is selectively deficient, we found that the spontaneous neuronal activity in Nedd4-2andi cortical neuron cultures, measured by a multiunit extracellular electrophysiology system, was basally elevated, less responsive to AMPAR activation, and much more sensitive to AMPAR blockade when compared with wild-type cultures. When performing kainic acid-induced seizures in vivo, we showed that elevated seizure susceptibility in Nedd4-2andi mice was normalized when GluA1 is genetically reduced. Furthermore, when studying epilepsy-associated missense mutations of Nedd4-2, we found that all three mutations disrupt the ubiquitination of GluA1 and fail to reduce surface GluA1 and spontaneous neuronal activity when compared with wild-type Nedd4-2. Collectively, our data suggest that impaired GluA1 ubiquitination contributes to Nedd4-2-dependent neuronal hyperactivity and seizures. Our findings provide critical information to the future development of therapeutic strategies for patients who carry mutations of Nedd4-2.
High-throughput methods have been used to explore the mechanisms by which androgen-sensitive prostate cancer (ASPC) develops into castration-resistant prostate cancer (CRPC). However, it is difficult to interpret cryptic results by routine experimental methods. In this study, we performed systematic and integrative analysis to detect key miRNAs that contribute to CRPC development. From three DNA microarray datasets, we retrieved 11 outlier microRNAs (miRNAs) that had expression discrepancies between ASPC and CRPC using a specific algorithm. Two of the miRNAs (miR-125b and miR-124) have previously been shown to be related to CRPC. Seven out of the other nine miRNAs were confirmed by quantitative PCR (Q-PCR) analysis. MiR-210, miR-218, miR-346, miR-197, and miR-149 were found to be over-expressed, while miR-122, miR-145, and let-7b were under-expressed in CRPC cell lines. GO and KEGG pathway analyses revealed that miR-218, miR-197, miR-145, miR-122, and let-7b, along with their target genes, were found to be involved in the PI3K and AKT3 signaling network, which is known to contribute to CRPC development. We then chose five miRNAs to verify the accuracy of the analysis. The target genes of each miRNA were altered significantly upon transfection of specific miRNA mimics in the C4–2 CRPC cell line, which was consistent with our pathway analysis results. Finally, we hypothesized that miR-218, miR-145, miR-197, miR-149, miR-122, and let-7b may contribute to the development of CRPC through the influence of Ras, Rho proteins, and the SCF complex. Further investigation is needed to verify the functions of the identified novel pathways in CRPC development.
BackgroundNeural network synchrony is a critical factor in regulating information transmission through the nervous system. Improperly regulated neural network synchrony is implicated in pathophysiological conditions such as epilepsy. Despite the awareness of its importance, the molecular signaling underlying the regulation of neural network synchrony, especially after stimulation, remains largely unknown.ResultsIn this study, we show that elevation of neuronal activity by the GABA(A) receptor antagonist, Picrotoxin, increases neural network synchrony in primary mouse cortical neuron cultures. The elevation of neuronal activity triggers Mdm2-dependent degradation of the tumor suppressor p53. We show here that blocking the degradation of p53 further enhances Picrotoxin-induced neural network synchrony, while promoting the inhibition of p53 with a p53 inhibitor reduces Picrotoxin-induced neural network synchrony. These data suggest that Mdm2-p53 signaling mediates a feedback mechanism to fine-tune neural network synchrony after activity stimulation. Furthermore, genetically reducing the expression of a direct target gene of p53, Nedd4-2, elevates neural network synchrony basally and occludes the effect of Picrotoxin. Finally, using a kainic acid-induced seizure model in mice, we show that alterations of Mdm2-p53-Nedd4-2 signaling affect seizure susceptibility.ConclusionTogether, our findings elucidate a critical role of Mdm2-p53-Nedd4-2 signaling underlying the regulation of neural network synchrony and seizure susceptibility and reveal potential therapeutic targets for hyperexcitability-associated neurological disorders.Electronic supplementary materialThe online version of this article (doi:10.1186/s13041-016-0214-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.