In this report, spherical silver nanoparticle (AgNP-sp) and rod-shaped silver nanoparticle (AgNR) were prepared by chemical reduction method and their antibacterial activity against various Gram-positive and Gram-negative bacteria had been evaluated for their efficiency. Minimal inhibitory concentration (MIC) tests were conducted to study the antibacterial properties, and substantiated with killing kinetics of silver nanoparticles (AgNPs). The study revealed that both AgNP-sp and AgNRs are good antibacterial candidates. Bacterial sensitivity to nanoparticles (NPs) was found to vary depending on microbial species. Disc diffusion studies revealed the greater effectiveness of AgNP-sp and AgNR against Klebsiella pneumoniae AWD5 at the doses of 249 and 392 µg. The dose dependent activities of prepared NPs were also observed on the batch studies of disc diffusion and MIC with various strains. The optical and morphological structures of NPs were analyzed by UV-visible, XRD, FE-SEM and TEM. Further, FESEM of bacterial culture treated with AgNPs confirmed antibacterial activity of NPs by showing rupture of bacterial cell wall. Also, the genome of test organism was found to have CusCFBA and CusRS operons. The killing kinetics confirmed that the death rate of K. pneumoniae was higher against AgNP-sp as compared to AgNR.
The plant root is the primary site of interaction between plants and associated microorganisms and constitutes the main components of plant microbiomes that impact crop production. The endophytic bacteria in the root zone have an important role in plant growth promotion. Diverse microbial communities inhabit plant root tissues, and they directly or indirectly promote plant growth by inhibiting the growth of plant pathogens, producing various secondary metabolites. Mechanisms of plant growth promotion and response of root endophytic microorganisms for their survival and colonization in the host plants are the result of complex plant-microbe interactions. Endophytic microorganisms also assist the host to sustain different biotic and abiotic stresses. Better insights are emerging for the endophyte, such as host plant interactions due to advancements in ‘omic’ technologies, which facilitate the exploration of genes that are responsible for plant tissue colonization. Consequently, this is informative to envisage putative functions and metabolic processes crucial for endophytic adaptations. Detection of cell signaling molecules between host plants and identification of compounds synthesized by root endophytes are effective means for their utilization in the agriculture sector as biofertilizers. In addition, it is interesting that the endophytic microorganism colonization impacts the relative abundance of indigenous microbial communities and suppresses the deleterious microorganisms in plant tissues. Natural products released by endophytes act as biocontrol agents and inhibit pathogen growth. The symbiosis of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) affects plant symbiotic signaling pathways and root colonization patterns and phytohormone synthesis. In this review, the potential of the root endophytic community, colonization, and role in the improvement of plant growth has been explained in the light of intricate plant-microbe interactions.
This research employs draft genome sequence data of Klebsiella pneumoniae AWD5 to explore genes that contribute to the degradation of polyaromatic hydrocarbon (PAH) and stimulate plant growth, for rhizosphere-mediated bioremediation. Annotation analysis suggests that the strain AWD5 not only possess gene clusters for PAH utilization, but also for utilization of benzoate, fluorobenzoate, phenylacetate (paa), hydroxyphenylacetic acid (hpa), 3-hydroxyphenyl propionate (mhp). A comparative genome analysis revealed that the genome of AWD5 was highly similar with genomes of environmental as well as clinical K. pneumoniae isolates. The artemis output confirmed that there are 139 different genes present in AWD5 which were absent in genome of clinical strain K. pneumoniae ATCC BAA-2146, and 25 genes were identified to be present in AWD5 genome but absent in genome of environmental strain K. pneumoniae KP-1. Pathway analyzed using Kyoto Encyclopedia of Genes and Genomes enzyme database revealed the presence of gene clusters that code for enzymes to initiate the opening of aromatic rings. The polyaromatic hydrocarbon and benzoate degradation were found to be metabolized through ortho-cleavage pathway, mineralizing the compounds to TCA cycle intermediates. Genes for plant growth promoting attributes such as Indole acetic acid (IAA) synthesis, siderophore production, and phosphate solubilization were detected in the genome. These attributes were verified in vitro, including IAA (14.75 µg/ml), siderophore production (13.56%), phosphate solubilization (198.28 ng/ml), and ACC deaminase (0.118 mM α-ketobutyrate/mg) in the presence of pyrene, and also compared with results obtained in glucose amended medium. K. pneumoniae AWD5 enhanced the growth of Jatropha curcas in the presence of pyrene-contaminated soil. Moreover, AWD5 harbors heavy metal resistance genes indicating adaptation to contaminants. The study revealed the genomic attributes of K. pneumoniae AWD5 for its catabolic characteristics for different aromatic compounds, which makes it suitable for rhizoremediation of PAH-contaminated soil.Electronic supplementary materialThe online version of this article (10.1007/s13205-018-1134-1) contains supplementary material, which is available to authorized users.
Bacterial pathogens resistant to multiple antibiotics are emergent threat to the public health which may evolve in the environment due to the co-selection of antibiotic resistance, driven by poly aromatic hydrocarbons (PAHs) and/or heavy metal contaminations. The co-selection of antibiotic resistance (AMR) evolves through the co-resistance or cross-resistance, or co-regulatory mechanisms, present in bacteria. The persistent toxic contaminants impose widespread pressure in both clinical and environmental setting, and may potentially cause the maintenance and spread of antibiotic resistance genes (ARGs). In the past few years, due to exponential increase of AMR, numerous drugs are now no longer effective to treat infectious diseases, especially in cases of bacterial infections. In this mini-review, we have described the role of co-resistance and cross-resistance as main sources for co-selection of ARGs; while other co-regulatory mechanisms are also involved with cross-resistance that regulates multiple ARGs. However, co-factors also support selections, which results in development and evolution of ARGs in absence of antibiotic pressure. Efflux pumps present on the same mobile genetic elements, possibly due to the function of Class 1 integrons (Int1), may increase the presence of ARGs into the environment, which further is promptly changed as per environmental conditions. This review also signifies that mutation plays important role in the expansion of ARGs due to presence of diverse types of anthropogenic pollutants, which results in overexpression of efflux pump with higher bacterial fitness cost; and these situations result in acquisition of resistant genes. The future aspects of co-selection with involvement of systems biology, synthetic biology and gene network approaches have also been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.