The Internet of Things (IoT) is a technological revolution that has changed everything we do and given us a new perspective on our daily lives, but despite the fact that numerous publications have focused on characterizing the many edges and technologies that make up an IoT system, the IoT ecosystem is still seen as too complex to be recognized as a stand-alone environment due to its significant diversity; hence, the objective of this research is to address such a complex environment in a way that highlights its components and distinguishes them both individually and in relation to their broader context. Therefore, the definition of IoT and its emergence were discussed and organized around the timeline of Internet development phases demonstrating that IoT has been a need that has accompanied the presence of the Internet since its early stages, and then its growth and impact were discussed and highlighted with estimates and numbers. On the technical side, each of the following groups, IoT components, protocols, and architectures, was defined, discussed, and grouped in such a way that their intergroup organization, as well as their placement and contribution to the overall ecosystem, was highlighted. This, in addition to the various examples mentioned throughout the discussion, will provide the reader with a better understanding of the Internet of Things and how deeply it has become entwined in our daily lives and routines as a result of its numerous applications.
International audienceIn this paper, we talk about the optimization of Energy in Wireless Sensor Networks and proposed routing protocol for Wireless Sensor Networks, baptized Energy Based Protocol (EBP) and Clustering EBP that operate under different scenarios and showed, many advantages in terms of load balancing, free looping, minimizing packet error rate and maximizing network lifetim
In this paper, a routing protocol for wireless sensor network, baptized energy based protocol (EBP) is proposed. Wireless sensor network presents many challenges and constraints, and one of the major constraints is the routing problem. Due to the limited energy of sensor nodes, routing in this type of network shall perform efficiently to maximize the network lifetime. One of the proposed algorithms is the directional source aware routing protocol (DSAP) which, after simulation, showed a lot of limitations and drawbacks. The modified directional source aware routing protocol (MDSAP) was proposed by the authors of this paper to address some of the DSAP's limitations but remains limited to a fixed topology, fixed source and stationary nodes. So EBP is proposed and operated under different scenarios and showed, after its simulation using TinyOS, many advantages in terms of load balancing, free looping, minimizing packet error rate and maximizing network lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.