The ability to perform aggressive movements, which are called aggressive flights, is important for quadrotors during navigation. However, aggressive quadrotor flights are still a great challenge to practical applications. The existing solutions to aggressive flights heavily rely on a predefined trajectory, which is a time-consuming preprocessing step. To avoid such path planning, we propose a curiosity-driven reinforcement learning method for aggressive flight missions and a similarity-based curiosity module is introduced to speed up the training procedure. A branch structure exploration (BSE) strategy is also applied to guarantee the robustness of the policy and to ensure the policy trained in simulations can be performed in realworld experiments directly. The experimental results in simulations demonstrate that our reinforcement learning algorithm performs well in aggressive flight tasks, speeds up the convergence process and improves the robustness of the policy. Besides, our algorithm shows a satisfactory simulated to real transferability and performs well in realworld experiments.
Purpose This work aims to combine the cloud robotics technologies with deep reinforcement learning to build a distributed training architecture and accelerate the learning procedure of autonomous systems. Especially, a distributed training architecture for navigating unmanned aerial vehicles (UAVs) in complicated dynamic environments is proposed. Design/methodology/approach This study proposes a distributed training architecture named experience-sharing learner-worker (ESLW) for deep reinforcement learning to navigate UAVs in dynamic environments, which is inspired by cloud-based techniques. With the ESLW architecture, multiple worker nodes operating in different environments can generate training data in parallel, and then the learner node trains a policy through the training data collected by the worker nodes. Besides, this study proposes an extended experience replay (EER) strategy to ensure the method can be applied to experience sequences to improve training efficiency. To learn more about dynamic environments, convolutional long short-term memory (ConvLSTM) modules are adopted to extract spatiotemporal information from training sequences. Findings Experimental results demonstrate that the ESLW architecture and the EER strategy accelerate the convergence speed and the ConvLSTM modules specialize in extract sequential information when navigating UAVs in dynamic environments. Originality/value Inspired by the cloud robotics technologies, this study proposes a distributed ESLW architecture for navigating UAVs in dynamic environments. Besides, the EER strategy is proposed to speed up training processes of experience sequences, and the ConvLSTM modules are added to networks to make full use of the sequential experiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.