This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF) algorithm consists of four steps: (i) acquisition of left and right images using AF points in the region-of-interest; (ii) feature extraction in the left image under low illumination and out-of-focus blur; (iii) the generation of two feature images using the phase difference between the left and right images; and (iv) estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.
For sustainable operation and maintenance of urban railway infrastructure, intelligent visual inspection of the railway infrastructure attracts increasing attention to avoid unreliable, manual observation by humans at night, while trains do not operate. Although various automatic approaches were proposed using image processing and computer vision techniques, most of them are focused only on railway tracks. In this paper, we present a novel railway inspection system using facility detection based on deep convolutional neural network and computer vision-based image comparison approach. The proposed system aims to automatically detect wears and cracks by comparing a pair of corresponding image sets acquired at different times. We installed line scan camera on the roof of the train. Unlike an area-based camera, the line scan camera quickly acquires images with a wide field of view. The proposed system consists of three main modules: (i) image reconstruction for registration of facility positions, (ii) facility detection using an improved single shot detector, and (iii) deformed region detection using image processing and computer vision techniques. In experiments, we demonstrate that the proposed system accurately finds facilities and detects their potential defects. For that reason, the proposed system can provide various advantages such as cost reduction for maintenance and accident prevention.
Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.