stand for rogue waves on a periodic background. The nonlinear Schrödinger equation in the focusing case admits two families of periodic wave solutions expressed by the Jacobian elliptic functions and. Both periodic waves are modulationally unstable with respect to long-wave perturbations. Exact solutions for the rogue periodic waves are constructed by using the explicit expressions for the periodic eigenfunctions of the Zakharov-Shabat spectral problem and the Darboux transformations. These exact solutions generalize the classical rogue wave (the so-called Peregrine's breather). The magnification factor of the rogue periodic waves is computed as a function of the elliptic modulus. Rogue periodic waves constructed here are compared with the rogue wave patterns obtained numerically in recent publications.
Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg-de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine's breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.
The double-periodic solutions of the focusing nonlinear Schrödinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we characterize the Lax spectrum for the double-periodic solutions and analyze rogue waves arising on their background. Magnification of the rogue waves is studied numerically.
We address the most general periodic travelling wave of the modified Korteweg-de Vries (mKdV) equation written as a rational function of Jacobian elliptic functions. By applying an algebraic method which relates the periodic travelling waves and the squared periodic eigenfunctions of the Lax operators, we characterize explicitly the location of eigenvalues in the periodic spectral problem away from the imaginary axis. We show that Darboux transformations with the periodic eigenfunctions remain in the class of the same periodic travelling waves of the mKdV equation. In a general setting, there exist three symmetric pairs of simple eigenvalues away from the imaginary axis, and we give a new representation of the second non-periodic solution to the Lax equations for the same eigenvalues. We show that Darboux transformations with the non-periodic solutions to the Lax equations produce rogue waves on the periodic background, which are either brought from infinity by propagating algebraic solitons or formed in a finite region of the time-space plane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.