Outburst floods resulting from giant landslide dams can cause devastating damage to hundreds or thousands of kilometres of a river. Accurate and timely delineation of flood inundated areas is essential for disaster assessment and mitigation. There have been significant advances in flood mapping using remote sensing images in recent years, but little attention has been devoted to outburst flood mapping. The short-duration nature of these events and observation constraints from cloud cover have significantly challenged outburst flood mapping. This study used the outburst flood of the Baige landslide dam on the Jinsha River on 3 November 2018 as an example to propose a new flood mapping method that combines optical images from Sentinel-2, synthetic aperture radar (SAR) images from Sentinel-1 and a Digital Elevation Model (DEM). First, in the cloud-free region, a comparison of four spectral indexes calculated from time series of Sentinel-2 images indicated that the normalized difference vegetation index (NDVI) with the threshold of 0.15 provided the best separation flooded area. Subsequently, in the cloud-covered region, an analysis of dual-polarization RGB false color composites images and backscattering coefficient differences of Sentinel-1 SAR data were found an apparent response to ground roughness’s changes caused by the flood. We carried out the flood range prediction model based on the random forest algorithm. Training samples consisted of 13 feature vectors obtained from the Hue-Saturation-Value color space, backscattering coefficient differences/ratio, DEM data, and a label set from the flood range prepared from Sentinel-2 images. Finally, a field investigation and confusion matrix tested the prediction accuracy of the end-of-flood map. The overall accuracy and Kappa coefficient were 92.3%, 0.89 respectively. The full extent of the outburst floods was successfully obtained within five days of its occurrence. The multi-source data merging framework and the massive sample preparation method with SAR images proposed in this paper, provide a practical demonstration for similar machine learning applications using remote sensing.
Slope units (SUs) are sub-watersheds bounded by ridge and valley lines. A slope unit reflects the physical relationship between landslides and geomorphological features and is especially useful for landslide sensitivity modeling. There have been significant algorithmic advances in the automatic delineation of SUs. But the intrinsic difficulties of determining input parameters and correcting for unreasonable SUs have hindered their wide application. An improved method of the evaluation and local multi-scale optimization for the automatic extraction of SUs is proposed. The Sus’ groups more consistent with the topographic features were achieved through a stepwise approach from a global optimum to a local refining. First, the preliminary subdivisions of multiple SUs were obtained based on the r.slopeunit software. The optimal subdivision scale was obtained by a collaborative evaluation approach capable of simultaneously measuring objective minimum discrepancies and seeking a global optimum. Second, under the selected optimal scale, unreasonable SUs such as over-subdivided slope units (OSSUs) and under-subdivided slope units (USSUs) were further distinguished. The local average similarity (LS) metric for each SU was designed based on calculating the SU’s area, common boundary and neighborhood variability. The inflection points of the cumulative frequency curve of LS were calculated as the distinguishing intervals for those unrealistic SUs by maximum interclass variance threshold. Third, a new effective optimization mechanism containing the re-subdivision of USSUs and merging of OSSUs was put into effect. We thus obtained SUs composed of terrain subdivisions with multiple scales, which is currently one of the few available methods for non-single scales. The statistical distributions of density, size and shapes demonstrate the excellent performance of the refined SUs in capturing the variability of complex terrains. Benefiting from the sufficient integrating approach of diverse features for each object, it is a significant advantage that the processing object can be transferred from general entirety to each precise individual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.